Current File : //usr/lib64/python2.7/site-packages/numpy/random/tests/test_random.py |
from numpy.testing import TestCase, run_module_suite, assert_,\
assert_raises
from numpy import random
from numpy.compat import asbytes
import numpy as np
class TestMultinomial(TestCase):
def test_basic(self):
random.multinomial(100, [0.2, 0.8])
def test_zero_probability(self):
random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
def test_int_negative_interval(self):
assert_( -5 <= random.randint(-5,-1) < -1)
x = random.randint(-5,-1,5)
assert_(np.all(-5 <= x))
assert_(np.all(x < -1))
class TestSetState(TestCase):
def setUp(self):
self.seed = 1234567890
self.prng = random.RandomState(self.seed)
self.state = self.prng.get_state()
def test_basic(self):
old = self.prng.tomaxint(16)
self.prng.set_state(self.state)
new = self.prng.tomaxint(16)
assert_(np.all(old == new))
def test_gaussian_reset(self):
""" Make sure the cached every-other-Gaussian is reset.
"""
old = self.prng.standard_normal(size=3)
self.prng.set_state(self.state)
new = self.prng.standard_normal(size=3)
assert_(np.all(old == new))
def test_gaussian_reset_in_media_res(self):
""" When the state is saved with a cached Gaussian, make sure the cached
Gaussian is restored.
"""
self.prng.standard_normal()
state = self.prng.get_state()
old = self.prng.standard_normal(size=3)
self.prng.set_state(state)
new = self.prng.standard_normal(size=3)
assert_(np.all(old == new))
def test_backwards_compatibility(self):
""" Make sure we can accept old state tuples that do not have the cached
Gaussian value.
"""
old_state = self.state[:-2]
x1 = self.prng.standard_normal(size=16)
self.prng.set_state(old_state)
x2 = self.prng.standard_normal(size=16)
self.prng.set_state(self.state)
x3 = self.prng.standard_normal(size=16)
assert_(np.all(x1 == x2))
assert_(np.all(x1 == x3))
def test_negative_binomial(self):
""" Ensure that the negative binomial results take floating point
arguments without truncation.
"""
self.prng.negative_binomial(0.5, 0.5)
class TestRandomDist(TestCase):
""" Make sure the random distrobution return the correct value for a
given seed
"""
def setUp(self):
self.seed = 1234567890
def test_rand(self):
np.random.seed(self.seed)
actual = np.random.rand(3, 2)
desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
[ 0.88868358904449662, 0.89165480011560816],
[ 0.4575674820298663 , 0.7781880808593471 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_randn(self):
np.random.seed(self.seed)
actual = np.random.randn(3, 2)
desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
[ 1.498988344300628 , -0.2286433324536169 ],
[ 2.031033998682787 , 2.17032494605655257]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_randint(self):
np.random.seed(self.seed)
actual = np.random.randint(-99, 99, size=(3,2))
desired = np.array([[ 31, 3],
[-52, 41],
[-48, -66]])
np.testing.assert_array_equal(actual, desired)
def test_random_integers(self):
np.random.seed(self.seed)
actual = np.random.random_integers(-99, 99, size=(3,2))
desired = np.array([[ 31, 3],
[-52, 41],
[-48, -66]])
np.testing.assert_array_equal(actual, desired)
def test_random_sample(self):
np.random.seed(self.seed)
actual = np.random.random_sample((3, 2))
desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
[ 0.88868358904449662, 0.89165480011560816],
[ 0.4575674820298663 , 0.7781880808593471 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_choice_uniform_replace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 4)
desired = np.array([2, 3, 2, 3])
np.testing.assert_array_equal(actual, desired)
def test_choice_nonuniform_replace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
desired = np.array([1, 1, 2, 2])
np.testing.assert_array_equal(actual, desired)
def test_choice_uniform_noreplace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 3, replace=False)
desired = np.array([0, 1, 3])
np.testing.assert_array_equal(actual, desired)
def test_choice_nonuniform_noreplace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 3, replace=False,
p=[0.1, 0.3, 0.5, 0.1])
desired = np.array([2, 3, 1])
np.testing.assert_array_equal(actual, desired)
def test_choice_noninteger(self):
np.random.seed(self.seed)
actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
desired = np.array(['c', 'd', 'c', 'd'])
np.testing.assert_array_equal(actual, desired)
def test_choice_exceptions(self):
sample = np.random.choice
assert_raises(ValueError, sample, -1, 3)
if hasattr(3., '__index__'):
assert_raises(ValueError, sample, 3., 3)
else:
assert_raises(ValueError, sample, object(), 3)
assert_raises(ValueError, sample, [[1,2],[3,4]], 3)
assert_raises(ValueError, sample, [], 3)
assert_raises(ValueError, sample, [1,2,3,4], 3,
p=[[0.25,0.25],[0.25,0.25]])
assert_raises(ValueError, sample, [1,2], 3, p=[0.4,0.4,0.2])
assert_raises(ValueError, sample, [1,2], 3, p=[1.1,-0.1])
assert_raises(ValueError, sample, [1,2], 3, p=[0.4,0.4])
assert_raises(ValueError, sample, [1,2,3], 4, replace=False)
assert_raises(ValueError, sample, [1,2,3], 2, replace=False,
p=[1,0,0])
def test_choice_return_shape(self):
p = [0.1,0.9]
# Check scalar
assert_(np.isscalar(np.random.choice(2, replace=True)))
assert_(np.isscalar(np.random.choice(2, replace=False)))
assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
assert_(np.isscalar(np.random.choice([1,2], replace=True)))
assert_(np.random.choice([None], replace=True) is None)
a = np.array([1, 2])
arr = np.empty(1, dtype=object)
arr[0] = a
assert_(np.random.choice(arr, replace=True) is a)
# Check 0-d array
s = tuple()
assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
assert_(not np.isscalar(np.random.choice([1,2], s, replace=True)))
assert_(np.random.choice([None], s, replace=True).ndim == 0)
a = np.array([1, 2])
arr = np.empty(1, dtype=object)
arr[0] = a
assert_(np.random.choice(arr, s, replace=True).item() is a)
# Check multi dimensional array
s = (2,3)
p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
assert_(np.random.choice(6, s, replace=True).shape, s)
assert_(np.random.choice(6, s, replace=False).shape, s)
assert_(np.random.choice(6, s, replace=True, p=p).shape, s)
assert_(np.random.choice(6, s, replace=False, p=p).shape, s)
assert_(np.random.choice(np.arange(6), s, replace=True).shape, s)
def test_bytes(self):
np.random.seed(self.seed)
actual = np.random.bytes(10)
desired = asbytes('\x82Ui\x9e\xff\x97+Wf\xa5')
np.testing.assert_equal(actual, desired)
def test_shuffle(self):
# Test lists, arrays, and multidimensional versions of both:
for conv in [lambda x: x,
np.asarray,
lambda x: [(i, i) for i in x],
lambda x: np.asarray([(i, i) for i in x])]:
np.random.seed(self.seed)
alist = conv([1,2,3,4,5,6,7,8,9,0])
np.random.shuffle(alist)
actual = alist
desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
np.testing.assert_array_equal(actual, desired)
def test_beta(self):
np.random.seed(self.seed)
actual = np.random.beta(.1, .9, size=(3, 2))
desired = np.array([[ 1.45341850513746058e-02, 5.31297615662868145e-04],
[ 1.85366619058432324e-06, 4.19214516800110563e-03],
[ 1.58405155108498093e-04, 1.26252891949397652e-04]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_binomial(self):
np.random.seed(self.seed)
actual = np.random.binomial(100.123, .456, size=(3, 2))
desired = np.array([[37, 43],
[42, 48],
[46, 45]])
np.testing.assert_array_equal(actual, desired)
def test_chisquare(self):
np.random.seed(self.seed)
actual = np.random.chisquare(50, size=(3, 2))
desired = np.array([[ 63.87858175501090585, 68.68407748911370447],
[ 65.77116116901505904, 47.09686762438974483],
[ 72.3828403199695174 , 74.18408615260374006]])
np.testing.assert_array_almost_equal(actual, desired, decimal=13)
def test_dirichlet(self):
np.random.seed(self.seed)
alpha = np.array([51.72840233779265162, 39.74494232180943953])
actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
desired = np.array([[[ 0.54539444573611562, 0.45460555426388438],
[ 0.62345816822039413, 0.37654183177960598]],
[[ 0.55206000085785778, 0.44793999914214233],
[ 0.58964023305154301, 0.41035976694845688]],
[[ 0.59266909280647828, 0.40733090719352177],
[ 0.56974431743975207, 0.43025568256024799]]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_exponential(self):
np.random.seed(self.seed)
actual = np.random.exponential(1.1234, size=(3, 2))
desired = np.array([[ 1.08342649775011624, 1.00607889924557314],
[ 2.46628830085216721, 2.49668106809923884],
[ 0.68717433461363442, 1.69175666993575979]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_f(self):
np.random.seed(self.seed)
actual = np.random.f(12, 77, size=(3, 2))
desired = np.array([[ 1.21975394418575878, 1.75135759791559775],
[ 1.44803115017146489, 1.22108959480396262],
[ 1.02176975757740629, 1.34431827623300415]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_gamma(self):
np.random.seed(self.seed)
actual = np.random.gamma(5, 3, size=(3, 2))
desired = np.array([[ 24.60509188649287182, 28.54993563207210627],
[ 26.13476110204064184, 12.56988482927716078],
[ 31.71863275789960568, 33.30143302795922011]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_geometric(self):
np.random.seed(self.seed)
actual = np.random.geometric(.123456789, size=(3, 2))
desired = np.array([[ 8, 7],
[17, 17],
[ 5, 12]])
np.testing.assert_array_equal(actual, desired)
def test_gumbel(self):
np.random.seed(self.seed)
actual = np.random.gumbel(loc = .123456789, scale = 2.0, size = (3, 2))
desired = np.array([[ 0.19591898743416816, 0.34405539668096674],
[-1.4492522252274278 , -1.47374816298446865],
[ 1.10651090478803416, -0.69535848626236174]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_hypergeometric(self):
np.random.seed(self.seed)
actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
desired = np.array([[10, 10],
[10, 10],
[ 9, 9]])
np.testing.assert_array_equal(actual, desired)
def test_laplace(self):
np.random.seed(self.seed)
actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[ 0.66599721112760157, 0.52829452552221945],
[ 3.12791959514407125, 3.18202813572992005],
[-0.05391065675859356, 1.74901336242837324]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_logistic(self):
np.random.seed(self.seed)
actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[ 1.09232835305011444, 0.8648196662399954 ],
[ 4.27818590694950185, 4.33897006346929714],
[-0.21682183359214885, 2.63373365386060332]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_lognormal(self):
np.random.seed(self.seed)
actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
desired = np.array([[ 16.50698631688883822, 36.54846706092654784],
[ 22.67886599981281748, 0.71617561058995771],
[ 65.72798501792723869, 86.84341601437161273]])
np.testing.assert_array_almost_equal(actual, desired, decimal=13)
def test_logseries(self):
np.random.seed(self.seed)
actual = np.random.logseries(p=.923456789, size=(3, 2))
desired = np.array([[ 2, 2],
[ 6, 17],
[ 3, 6]])
np.testing.assert_array_equal(actual, desired)
def test_multinomial(self):
np.random.seed(self.seed)
actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
desired = np.array([[[4, 3, 5, 4, 2, 2],
[5, 2, 8, 2, 2, 1]],
[[3, 4, 3, 6, 0, 4],
[2, 1, 4, 3, 6, 4]],
[[4, 4, 2, 5, 2, 3],
[4, 3, 4, 2, 3, 4]]])
np.testing.assert_array_equal(actual, desired)
def test_multivariate_normal(self):
np.random.seed(self.seed)
mean= (.123456789, 10)
cov = [[1,0],[1,0]]
size = (3, 2)
actual = np.random.multivariate_normal(mean, cov, size)
desired = np.array([[[ -1.47027513018564449, 10. ],
[ -1.65915081534845532, 10. ]],
[[ -2.29186329304599745, 10. ],
[ -1.77505606019580053, 10. ]],
[[ -0.54970369430044119, 10. ],
[ 0.29768848031692957, 10. ]]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_negative_binomial(self):
np.random.seed(self.seed)
actual = np.random.negative_binomial(n = 100, p = .12345, size = (3, 2))
desired = np.array([[848, 841],
[892, 611],
[779, 647]])
np.testing.assert_array_equal(actual, desired)
def test_noncentral_chisquare(self):
np.random.seed(self.seed)
actual = np.random.noncentral_chisquare(df = 5, nonc = 5, size = (3, 2))
desired = np.array([[ 23.91905354498517511, 13.35324692733826346],
[ 31.22452661329736401, 16.60047399466177254],
[ 5.03461598262724586, 17.94973089023519464]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_noncentral_f(self):
np.random.seed(self.seed)
actual = np.random.noncentral_f(dfnum = 5, dfden = 2, nonc = 1,
size = (3, 2))
desired = np.array([[ 1.40598099674926669, 0.34207973179285761],
[ 3.57715069265772545, 7.92632662577829805],
[ 0.43741599463544162, 1.1774208752428319 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_normal(self):
np.random.seed(self.seed)
actual = np.random.normal(loc = .123456789, scale = 2.0, size = (3, 2))
desired = np.array([[ 2.80378370443726244, 3.59863924443872163],
[ 3.121433477601256 , -0.33382987590723379],
[ 4.18552478636557357, 4.46410668111310471]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_pareto(self):
np.random.seed(self.seed)
actual = np.random.pareto(a =.123456789, size = (3, 2))
desired = np.array([[ 2.46852460439034849e+03, 1.41286880810518346e+03],
[ 5.28287797029485181e+07, 6.57720981047328785e+07],
[ 1.40840323350391515e+02, 1.98390255135251704e+05]])
# For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
# matrix differs by 24 nulps. Discussion:
# http://mail.scipy.org/pipermail/numpy-discussion/2012-September/063801.html
# Consensus is that this is probably some gcc quirk that affects
# rounding but not in any important way, so we just use a looser
# tolerance on this test:
np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
def test_poisson(self):
np.random.seed(self.seed)
actual = np.random.poisson(lam = .123456789, size=(3, 2))
desired = np.array([[0, 0],
[1, 0],
[0, 0]])
np.testing.assert_array_equal(actual, desired)
def test_poisson_exceptions(self):
lambig = np.iinfo('l').max
lamneg = -1
assert_raises(ValueError, np.random.poisson, lamneg)
assert_raises(ValueError, np.random.poisson, [lamneg]*10)
assert_raises(ValueError, np.random.poisson, lambig)
assert_raises(ValueError, np.random.poisson, [lambig]*10)
def test_power(self):
np.random.seed(self.seed)
actual = np.random.power(a =.123456789, size = (3, 2))
desired = np.array([[ 0.02048932883240791, 0.01424192241128213],
[ 0.38446073748535298, 0.39499689943484395],
[ 0.00177699707563439, 0.13115505880863756]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_rayleigh(self):
np.random.seed(self.seed)
actual = np.random.rayleigh(scale = 10, size = (3, 2))
desired = np.array([[ 13.8882496494248393 , 13.383318339044731 ],
[ 20.95413364294492098, 21.08285015800712614],
[ 11.06066537006854311, 17.35468505778271009]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_standard_cauchy(self):
np.random.seed(self.seed)
actual = np.random.standard_cauchy(size = (3, 2))
desired = np.array([[ 0.77127660196445336, -6.55601161955910605],
[ 0.93582023391158309, -2.07479293013759447],
[-4.74601644297011926, 0.18338989290760804]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_exponential(self):
np.random.seed(self.seed)
actual = np.random.standard_exponential(size = (3, 2))
desired = np.array([[ 0.96441739162374596, 0.89556604882105506],
[ 2.1953785836319808 , 2.22243285392490542],
[ 0.6116915921431676 , 1.50592546727413201]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_gamma(self):
np.random.seed(self.seed)
actual = np.random.standard_gamma(shape = 3, size = (3, 2))
desired = np.array([[ 5.50841531318455058, 6.62953470301903103],
[ 5.93988484943779227, 2.31044849402133989],
[ 7.54838614231317084, 8.012756093271868 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_standard_normal(self):
np.random.seed(self.seed)
actual = np.random.standard_normal(size = (3, 2))
desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
[ 1.498988344300628 , -0.2286433324536169 ],
[ 2.031033998682787 , 2.17032494605655257]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_t(self):
np.random.seed(self.seed)
actual = np.random.standard_t(df = 10, size = (3, 2))
desired = np.array([[ 0.97140611862659965, -0.08830486548450577],
[ 1.36311143689505321, -0.55317463909867071],
[-0.18473749069684214, 0.61181537341755321]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_triangular(self):
np.random.seed(self.seed)
actual = np.random.triangular(left = 5.12, mode = 10.23, right = 20.34,
size = (3, 2))
desired = np.array([[ 12.68117178949215784, 12.4129206149193152 ],
[ 16.20131377335158263, 16.25692138747600524],
[ 11.20400690911820263, 14.4978144835829923 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_uniform(self):
np.random.seed(self.seed)
actual = np.random.uniform(low = 1.23, high=10.54, size = (3, 2))
desired = np.array([[ 6.99097932346268003, 6.73801597444323974],
[ 9.50364421400426274, 9.53130618907631089],
[ 5.48995325769805476, 8.47493103280052118]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_vonmises(self):
np.random.seed(self.seed)
actual = np.random.vonmises(mu = 1.23, kappa = 1.54, size = (3, 2))
desired = np.array([[ 2.28567572673902042, 2.89163838442285037],
[ 0.38198375564286025, 2.57638023113890746],
[ 1.19153771588353052, 1.83509849681825354]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_wald(self):
np.random.seed(self.seed)
actual = np.random.wald(mean = 1.23, scale = 1.54, size = (3, 2))
desired = np.array([[ 3.82935265715889983, 5.13125249184285526],
[ 0.35045403618358717, 1.50832396872003538],
[ 0.24124319895843183, 0.22031101461955038]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_weibull(self):
np.random.seed(self.seed)
actual = np.random.weibull(a = 1.23, size = (3, 2))
desired = np.array([[ 0.97097342648766727, 0.91422896443565516],
[ 1.89517770034962929, 1.91414357960479564],
[ 0.67057783752390987, 1.39494046635066793]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_zipf(self):
np.random.seed(self.seed)
actual = np.random.zipf(a = 1.23, size = (3, 2))
desired = np.array([[66, 29],
[ 1, 1],
[ 3, 13]])
np.testing.assert_array_equal(actual, desired)
if __name__ == "__main__":
run_module_suite()