Current File : //usr/lib64/python2.7/site-packages/numpy/polynomial/tests/test_hermite_e.py
"""Tests for hermite_e module.

"""
from __future__ import division

import numpy as np
import numpy.polynomial.hermite_e as herme
from numpy.polynomial.polynomial import polyval
from numpy.testing import *

He0 = np.array([ 1 ])
He1 = np.array([ 0 , 1 ])
He2 = np.array([ -1 ,0 , 1 ])
He3 = np.array([ 0 , -3 ,0 , 1 ])
He4 = np.array([ 3 ,0 , -6 ,0 , 1 ])
He5 = np.array([ 0 , 15 ,0 , -10 ,0 , 1 ])
He6 = np.array([ -15 ,0 , 45 ,0 , -15 ,0 , 1 ])
He7 = np.array([ 0 , -105 ,0 , 105 ,0 , -21 ,0 , 1 ])
He8 = np.array([ 105 ,0 , -420 ,0 , 210 ,0 , -28 ,0 , 1 ])
He9 = np.array([ 0 , 945 ,0 , -1260 ,0 , 378 ,0 , -36 ,0 , 1 ])

Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9]

def trim(x) :
    return herme.hermetrim(x, tol=1e-6)


class TestConstants(TestCase) :

    def test_hermedomain(self) :
        assert_equal(herme.hermedomain, [-1, 1])

    def test_hermezero(self) :
        assert_equal(herme.hermezero, [0])

    def test_hermeone(self) :
        assert_equal(herme.hermeone, [1])

    def test_hermex(self) :
        assert_equal(herme.hermex, [0, 1])


class TestArithmetic(TestCase) :
    x = np.linspace(-3, 3, 100)

    def test_hermeadd(self) :
        for i in range(5) :
            for j in range(5) :
                msg = "At i=%d, j=%d" % (i,j)
                tgt = np.zeros(max(i,j) + 1)
                tgt[i] += 1
                tgt[j] += 1
                res = herme.hermeadd([0]*i + [1], [0]*j + [1])
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_hermesub(self) :
        for i in range(5) :
            for j in range(5) :
                msg = "At i=%d, j=%d" % (i,j)
                tgt = np.zeros(max(i,j) + 1)
                tgt[i] += 1
                tgt[j] -= 1
                res = herme.hermesub([0]*i + [1], [0]*j + [1])
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_hermemulx(self):
        assert_equal(herme.hermemulx([0]), [0])
        assert_equal(herme.hermemulx([1]), [0,1])
        for i in range(1, 5):
            ser = [0]*i + [1]
            tgt = [0]*(i - 1) + [i, 0, 1]
            assert_equal(herme.hermemulx(ser), tgt)

    def test_hermemul(self) :
        # check values of result
        for i in range(5) :
            pol1 = [0]*i + [1]
            val1 = herme.hermeval(self.x, pol1)
            for j in range(5) :
                msg = "At i=%d, j=%d" % (i,j)
                pol2 = [0]*j + [1]
                val2 = herme.hermeval(self.x, pol2)
                pol3 = herme.hermemul(pol1, pol2)
                val3 = herme.hermeval(self.x, pol3)
                assert_(len(pol3) == i + j + 1, msg)
                assert_almost_equal(val3, val1*val2, err_msg=msg)

    def test_hermediv(self) :
        for i in range(5) :
            for j in range(5) :
                msg = "At i=%d, j=%d" % (i,j)
                ci = [0]*i + [1]
                cj = [0]*j + [1]
                tgt = herme.hermeadd(ci, cj)
                quo, rem = herme.hermediv(tgt, ci)
                res = herme.hermeadd(herme.hermemul(quo, ci), rem)
                assert_equal(trim(res), trim(tgt), err_msg=msg)


class TestEvaluation(TestCase) :
    # coefficients of 1 + 2*x + 3*x**2
    c1d = np.array([4., 2., 3.])
    c2d = np.einsum('i,j->ij', c1d, c1d)
    c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)

    # some random values in [-1, 1)
    x = np.random.random((3, 5))*2 - 1
    y = polyval(x, [1., 2., 3.])


    def test_hermeval(self) :
        #check empty input
        assert_equal(herme.hermeval([], [1]).size, 0)

        #check normal input)
        x = np.linspace(-1,1)
        y = [polyval(x, c) for c in Helist]
        for i in range(10) :
            msg = "At i=%d" % i
            ser = np.zeros
            tgt = y[i]
            res = herme.hermeval(x, [0]*i + [1])
            assert_almost_equal(res, tgt, err_msg=msg)

        #check that shape is preserved
        for i in range(3) :
            dims = [2]*i
            x = np.zeros(dims)
            assert_equal(herme.hermeval(x, [1]).shape, dims)
            assert_equal(herme.hermeval(x, [1,0]).shape, dims)
            assert_equal(herme.hermeval(x, [1,0,0]).shape, dims)

    def test_hermeval2d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test exceptions
        assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d)

        #test values
        tgt = y1*y2
        res = herme.hermeval2d(x1, x2, self.c2d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2,3))
        res = herme.hermeval2d(z, z, self.c2d)
        assert_(res.shape == (2,3))

    def test_hermeval3d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test exceptions
        assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d)

        #test values
        tgt = y1*y2*y3
        res = herme.hermeval3d(x1, x2, x3, self.c3d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2,3))
        res = herme.hermeval3d(z, z, z, self.c3d)
        assert_(res.shape == (2,3))

    def test_hermegrid2d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test values
        tgt = np.einsum('i,j->ij', y1, y2)
        res = herme.hermegrid2d(x1, x2, self.c2d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2,3))
        res = herme.hermegrid2d(z, z, self.c2d)
        assert_(res.shape == (2, 3)*2)

    def test_hermegrid3d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test values
        tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
        res = herme.hermegrid3d(x1, x2, x3, self.c3d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2,3))
        res = herme.hermegrid3d(z, z, z, self.c3d)
        assert_(res.shape == (2, 3)*3)


class TestIntegral(TestCase):

    def test_hermeint(self) :
        # check exceptions
        assert_raises(ValueError, herme.hermeint, [0], .5)
        assert_raises(ValueError, herme.hermeint, [0], -1)
        assert_raises(ValueError, herme.hermeint, [0], 1, [0,0])

        # test integration of zero polynomial
        for i in range(2, 5):
            k = [0]*(i - 2) + [1]
            res = herme.hermeint([0], m=i, k=k)
            assert_almost_equal(res, [0, 1])

        # check single integration with integration constant
        for i in range(5) :
            scl = i + 1
            pol = [0]*i + [1]
            tgt = [i] + [0]*i + [1/scl]
            hermepol = herme.poly2herme(pol)
            hermeint = herme.hermeint(hermepol, m=1, k=[i])
            res = herme.herme2poly(hermeint)
            assert_almost_equal(trim(res), trim(tgt))

        # check single integration with integration constant and lbnd
        for i in range(5) :
            scl = i + 1
            pol = [0]*i + [1]
            hermepol = herme.poly2herme(pol)
            hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1)
            assert_almost_equal(herme.hermeval(-1, hermeint), i)

        # check single integration with integration constant and scaling
        for i in range(5) :
            scl = i + 1
            pol = [0]*i + [1]
            tgt = [i] + [0]*i + [2/scl]
            hermepol = herme.poly2herme(pol)
            hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2)
            res = herme.herme2poly(hermeint)
            assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with default k
        for i in range(5) :
            for j in range(2,5) :
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j) :
                    tgt = herme.hermeint(tgt, m=1)
                res = herme.hermeint(pol, m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with defined k
        for i in range(5) :
            for j in range(2,5) :
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j) :
                    tgt = herme.hermeint(tgt, m=1, k=[k])
                res = herme.hermeint(pol, m=j, k=range(j))
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with lbnd
        for i in range(5) :
            for j in range(2,5) :
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j) :
                    tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1)
                res = herme.hermeint(pol, m=j, k=range(j), lbnd=-1)
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with scaling
        for i in range(5) :
            for j in range(2,5) :
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j) :
                    tgt = herme.hermeint(tgt, m=1, k=[k], scl=2)
                res = herme.hermeint(pol, m=j, k=range(j), scl=2)
                assert_almost_equal(trim(res), trim(tgt))

    def test_hermeint_axis(self):
        # check that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T
        res = herme.hermeint(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herme.hermeint(c) for c in c2d])
        res = herme.hermeint(c2d, axis=1)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d])
        res = herme.hermeint(c2d, k=3, axis=1)
        assert_almost_equal(res, tgt)


class TestDerivative(TestCase) :

    def test_hermeder(self) :
        # check exceptions
        assert_raises(ValueError, herme.hermeder, [0], .5)
        assert_raises(ValueError, herme.hermeder, [0], -1)

        # check that zeroth deriviative does nothing
        for i in range(5) :
            tgt = [0]*i + [1]
            res = herme.hermeder(tgt, m=0)
            assert_equal(trim(res), trim(tgt))

        # check that derivation is the inverse of integration
        for i in range(5) :
            for j in range(2,5) :
                tgt = [0]*i + [1]
                res = herme.hermeder(herme.hermeint(tgt, m=j), m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # check derivation with scaling
        for i in range(5) :
            for j in range(2,5) :
                tgt = [0]*i + [1]
                res = herme.hermeder(herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5)
                assert_almost_equal(trim(res), trim(tgt))

    def test_hermeder_axis(self):
        # check that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T
        res = herme.hermeder(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herme.hermeder(c) for c in c2d])
        res = herme.hermeder(c2d, axis=1)
        assert_almost_equal(res, tgt)


class TestVander(TestCase):
    # some random values in [-1, 1)
    x = np.random.random((3, 5))*2 - 1


    def test_hermevander(self) :
        # check for 1d x
        x = np.arange(3)
        v = herme.hermevander(x, 3)
        assert_(v.shape == (3, 4))
        for i in range(4) :
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], herme.hermeval(x, coef))

        # check for 2d x
        x = np.array([[1, 2], [3, 4], [5, 6]])
        v = herme.hermevander(x, 3)
        assert_(v.shape == (3, 2, 4))
        for i in range(4) :
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], herme.hermeval(x, coef))

    def test_hermevander2d(self) :
        # also tests hermeval2d for non-square coefficient array
        x1, x2, x3 = self.x
        c = np.random.random((2, 3))
        van = herme.hermevander2d(x1, x2, [1, 2])
        tgt = herme.hermeval2d(x1, x2, c)
        res = np.dot(van, c.flat)
        assert_almost_equal(res, tgt)

        # check shape
        van = herme.hermevander2d([x1], [x2], [1, 2])
        assert_(van.shape == (1, 5, 6))


    def test_hermevander3d(self) :
        # also tests hermeval3d for non-square coefficient array
        x1, x2, x3 = self.x
        c = np.random.random((2, 3, 4))
        van = herme.hermevander3d(x1, x2, x3, [1, 2, 3])
        tgt = herme.hermeval3d(x1, x2, x3, c)
        res = np.dot(van, c.flat)
        assert_almost_equal(res, tgt)

        # check shape
        van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3])
        assert_(van.shape == (1, 5, 24))


class TestFitting(TestCase):

    def test_hermefit(self) :
        def f(x) :
            return x*(x - 1)*(x - 2)

        # Test exceptions
        assert_raises(ValueError, herme.hermefit, [1],    [1],     -1)
        assert_raises(TypeError,  herme.hermefit, [[1]],  [1],      0)
        assert_raises(TypeError,  herme.hermefit, [],     [1],      0)
        assert_raises(TypeError,  herme.hermefit, [1],    [[[1]]],  0)
        assert_raises(TypeError,  herme.hermefit, [1, 2], [1],      0)
        assert_raises(TypeError,  herme.hermefit, [1],    [1, 2],   0)
        assert_raises(TypeError,  herme.hermefit, [1],    [1],   0, w=[[1]])
        assert_raises(TypeError,  herme.hermefit, [1],    [1],   0, w=[1,1])

        # Test fit
        x = np.linspace(0,2)
        y = f(x)
        #
        coef3 = herme.hermefit(x, y, 3)
        assert_equal(len(coef3), 4)
        assert_almost_equal(herme.hermeval(x, coef3), y)
        #
        coef4 = herme.hermefit(x, y, 4)
        assert_equal(len(coef4), 5)
        assert_almost_equal(herme.hermeval(x, coef4), y)
        #
        coef2d = herme.hermefit(x, np.array([y,y]).T, 3)
        assert_almost_equal(coef2d, np.array([coef3,coef3]).T)
        # test weighting
        w = np.zeros_like(x)
        yw = y.copy()
        w[1::2] = 1
        y[0::2] = 0
        wcoef3 = herme.hermefit(x, yw, 3, w=w)
        assert_almost_equal(wcoef3, coef3)
        #
        wcoef2d = herme.hermefit(x, np.array([yw,yw]).T, 3, w=w)
        assert_almost_equal(wcoef2d, np.array([coef3,coef3]).T)
        # test scaling with complex values x points whose square
        # is zero when summed.
        x = [1, 1j, -1, -1j]
        assert_almost_equal(herme.hermefit(x, x, 1), [0, 1])

class TestGauss(TestCase):

    def test_100(self):
        x, w = herme.hermegauss(100)

        # test orthogonality. Note that the results need to be normalized,
        # otherwise the huge values that can arise from fast growing
        # functions like Laguerre can be very confusing.
        v = herme.hermevander(x, 99)
        vv = np.dot(v.T * w, v)
        vd = 1/np.sqrt(vv.diagonal())
        vv = vd[:,None] * vv * vd
        assert_almost_equal(vv, np.eye(100))

        # check that the integral of 1 is correct
        tgt = np.sqrt(2*np.pi)
        assert_almost_equal(w.sum(), tgt)


class TestMisc(TestCase) :

    def test_hermefromroots(self) :
        res = herme.hermefromroots([])
        assert_almost_equal(trim(res), [1])
        for i in range(1,5) :
            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
            pol = herme.hermefromroots(roots)
            res = herme.hermeval(roots, pol)
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(herme.herme2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt)

    def test_hermeroots(self) :
        assert_almost_equal(herme.hermeroots([1]), [])
        assert_almost_equal(herme.hermeroots([1, 1]), [-1])
        for i in range(2,5) :
            tgt = np.linspace(-1, 1, i)
            res = herme.hermeroots(herme.hermefromroots(tgt))
            assert_almost_equal(trim(res), trim(tgt))

    def test_hermetrim(self) :
        coef = [2, -1, 1, 0]

        # Test exceptions
        assert_raises(ValueError, herme.hermetrim, coef, -1)

        # Test results
        assert_equal(herme.hermetrim(coef), coef[:-1])
        assert_equal(herme.hermetrim(coef, 1), coef[:-3])
        assert_equal(herme.hermetrim(coef, 2), [0])

    def test_hermeline(self) :
        assert_equal(herme.hermeline(3,4), [3, 4])

    def test_herme2poly(self) :
        for i in range(10) :
            assert_almost_equal(herme.herme2poly([0]*i + [1]), Helist[i])

    def test_poly2herme(self) :
        for i in range(10) :
            assert_almost_equal(herme.poly2herme(Helist[i]), [0]*i + [1])

    def test_weight(self):
        x = np.linspace(-5, 5, 11)
        tgt = np.exp(-.5*x**2)
        res = herme.hermeweight(x)
        assert_almost_equal(res, tgt)


if __name__ == "__main__":
    run_module_suite()