Current File : //usr/lib64/python2.7/site-packages/numpy/ma/__init__.pyo
�
E�`Qc@s�dZdZdZdZdZddlZddlTddlZddlTdd	gZeej7Zeej7Zdd
lm	Z	e	�j
Z
e	�jZdS(s*
=============
Masked Arrays
=============

Arrays sometimes contain invalid or missing data.  When doing operations
on such arrays, we wish to suppress invalid values, which is the purpose masked
arrays fulfill (an example of typical use is given below).

For example, examine the following array:

>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])

When we try to calculate the mean of the data, the result is undetermined:

>>> np.mean(x)
nan

The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work.  Enter
masked arrays:

>>> m = np.ma.masked_array(x, np.isnan(x))
>>> m
masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
      mask = [False False False  True False False False  True],
      fill_value=1e+20)

Here, we construct a masked array that suppress all ``NaN`` values.  We
may now proceed to calculate the mean of the other values:

>>> np.mean(m)
2.6666666666666665

.. [1] Not-a-Number, a floating point value that is the result of an
       invalid operation.

s5Pierre GF Gerard-Marchant ($Author: jarrod.millman $)s1.0s$Revision: 3473 $s5$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $i����N(t*tcoretextras(tTester(t__doc__t
__author__t__version__t__revision__t__date__RRt__all__t
numpy.testingRttesttbench(((s7/usr/lib64/python2.7/site-packages/numpy/ma/__init__.pyt<module>&s