Current File : //usr/lib64/python2.7/site-packages/numpy/core/shape_base.pyo |
�
E�`Qc @ sn d d d d d g Z d d l Z d d l m Z m Z m Z d � Z d � Z d
� Z d � Z d � Z
d S(
t
atleast_1dt
atleast_2dt
atleast_3dt vstackt hstacki����N( t arrayt
asanyarrayt newaxisc G s g } xT | D]L } t | � } t | j � d k rF | j d � } n | } | j | � q
Wt | � d k rw | d S| Sd S( s)
Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst
higher-dimensional inputs are preserved.
Parameters
----------
arys1, arys2, ... : array_like
One or more input arrays.
Returns
-------
ret : ndarray
An array, or sequence of arrays, each with ``a.ndim >= 1``.
Copies are made only if necessary.
See Also
--------
atleast_2d, atleast_3d
Examples
--------
>>> np.atleast_1d(1.0)
array([ 1.])
>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.]])
>>> np.atleast_1d(x) is x
True
>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]
i i N( R t lent shapet reshapet append( t aryst rest aryt result( ( s; /usr/lib64/python2.7/site-packages/numpy/core/shape_base.pyR s '
c G s� g } x� | D]} } t | � } t | j � d k rI | j d d � } n4 t | j � d k rw | t d d � f } n | } | j | � q
Wt | � d k r� | d S| Sd S( sa
View inputs as arrays with at least two dimensions.
Parameters
----------
arys1, arys2, ... : array_like
One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have two or more dimensions are
preserved.
Returns
-------
res, res2, ... : ndarray
An array, or tuple of arrays, each with ``a.ndim >= 2``.
Copies are avoided where possible, and views with two or more
dimensions are returned.
See Also
--------
atleast_1d, atleast_3d
Examples
--------
>>> np.atleast_2d(3.0)
array([[ 3.]])
>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[ 0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True
>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]
i i N( R R R R
R R ( R R
R R ( ( s; /usr/lib64/python2.7/site-packages/numpy/core/shape_base.pyR : s %
c G s� g } x� | D]� } t | � } t | j � d k rL | j d d d � } nn t | j � d k r} | t d d � t f } n= t | j � d k r� | d d � d d � t f } n | } | j | � q
Wt | � d k r� | d S| Sd S( s�
View inputs as arrays with at least three dimensions.
Parameters
----------
arys1, arys2, ... : array_like
One or more array-like sequences. Non-array inputs are converted to
arrays. Arrays that already have three or more dimensions are
preserved.
Returns
-------
res1, res2, ... : ndarray
An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are
avoided where possible, and views with three or more dimensions are
returned. For example, a 1-D array of shape ``(N,)`` becomes a view
of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a
view of shape ``(M, N, 1)``.
See Also
--------
atleast_1d, atleast_2d
Examples
--------
>>> np.atleast_3d(3.0)
array([[[ 3.]]])
>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)
>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x
True
>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print arr, arr.shape
...
[[[1]
[2]]] (1, 2, 1)
[[[1]
[2]]] (1, 2, 1)
[[[1 2]]] (1, 1, 2)
i i Ni ( R R R R
R R ( R R
R R ( ( s; /usr/lib64/python2.7/site-packages/numpy/core/shape_base.pyR n s 1
"c C s t j t t | � d � S( s�
Stack arrays in sequence vertically (row wise).
Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by `vsplit`.
Parameters
----------
tup : sequence of ndarrays
Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.
See Also
--------
hstack : Stack arrays in sequence horizontally (column wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
concatenate : Join a sequence of arrays together.
vsplit : Split array into a list of multiple sub-arrays vertically.
Notes
-----
Equivalent to ``np.concatenate(tup, axis=0)`` if `tup` contains arrays that
are at least 2-dimensional.
Examples
--------
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])
i ( t _nxt concatenatet mapR ( t tup( ( s; /usr/lib64/python2.7/site-packages/numpy/core/shape_base.pyR � s 1c C sF t t | � } | d j d k r2 t j | d � St j | d � Sd S( s
Stack arrays in sequence horizontally (column wise).
Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by `hsplit`.
Parameters
----------
tup : sequence of ndarrays
All arrays must have the same shape along all but the second axis.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.
See Also
--------
vstack : Stack arrays in sequence vertically (row wise).
dstack : Stack arrays in sequence depth wise (along third axis).
concatenate : Join a sequence of arrays together.
hsplit : Split array along second axis.
Notes
-----
Equivalent to ``np.concatenate(tup, axis=1)``
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
i i N( R R t ndimR R ( R t arrs( ( s; /usr/lib64/python2.7/site-packages/numpy/core/shape_base.pyR � s *( t __all__t numericR R R R R R R R R ( ( ( s; /usr/lib64/python2.7/site-packages/numpy/core/shape_base.pyt <module> s 4 4 C 3