Current File : //proc/self/root/usr/include/tbb/internal/_flow_graph_node_impl.h |
/*
Copyright 2005-2013 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks.
Threading Building Blocks is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
Threading Building Blocks is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Threading Building Blocks; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
#ifndef __TBB__flow_graph_node_impl_H
#define __TBB__flow_graph_node_impl_H
#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif
#include "_flow_graph_item_buffer_impl.h"
//! @cond INTERNAL
namespace internal {
using tbb::internal::aggregated_operation;
using tbb::internal::aggregating_functor;
using tbb::internal::aggregator;
template< typename T, typename A >
class function_input_queue : public item_buffer<T,A> {
public:
bool pop( T& t ) {
return this->pop_front( t );
}
bool push( T& t ) {
return this->push_back( t );
}
};
//! Input and scheduling for a function node that takes a type Input as input
// The only up-ref is apply_body_impl, which should implement the function
// call and any handling of the result.
template< typename Input, typename A, typename ImplType >
class function_input_base : public receiver<Input>, tbb::internal::no_assign {
typedef sender<Input> predecessor_type;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
enum op_type {reg_pred, rem_pred, app_body, try_fwd, tryput_bypass, app_body_bypass };
typedef function_input_base<Input, A, ImplType> my_class;
public:
//! The input type of this receiver
typedef Input input_type;
//! Constructor for function_input_base
function_input_base( graph &g, size_t max_concurrency, function_input_queue<input_type,A> *q = NULL )
: my_root_task(g.root_task()), my_max_concurrency(max_concurrency), my_concurrency(0),
my_queue(q), forwarder_busy(false) {
my_predecessors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
}
//! Copy constructor
function_input_base( const function_input_base& src, function_input_queue<input_type,A> *q = NULL ) :
receiver<Input>(), tbb::internal::no_assign(),
my_root_task( src.my_root_task), my_max_concurrency(src.my_max_concurrency),
my_concurrency(0), my_queue(q), forwarder_busy(false)
{
my_predecessors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
}
//! Destructor
virtual ~function_input_base() {
if ( my_queue ) delete my_queue;
}
//! Put to the node, returning a task if available
virtual task * try_put_task( const input_type &t ) {
if ( my_max_concurrency == 0 ) {
return create_body_task( t );
} else {
my_operation op_data(t, tryput_bypass);
my_aggregator.execute(&op_data);
if(op_data.status == SUCCEEDED ) {
return op_data.bypass_t;
}
return NULL;
}
}
//! Adds src to the list of cached predecessors.
/* override */ bool register_predecessor( predecessor_type &src ) {
my_operation op_data(reg_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
return true;
}
//! Removes src from the list of cached predecessors.
/* override */ bool remove_predecessor( predecessor_type &src ) {
my_operation op_data(rem_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
return true;
}
protected:
void reset_function_input_base() {
my_concurrency = 0;
if(my_queue) {
my_queue->reset();
}
my_predecessors.reset();
forwarder_busy = false;
}
task *my_root_task;
const size_t my_max_concurrency;
size_t my_concurrency;
function_input_queue<input_type, A> *my_queue;
predecessor_cache<input_type, null_mutex > my_predecessors;
/*override*/void reset_receiver() {
my_predecessors.reset();
}
private:
friend class apply_body_task_bypass< my_class, input_type >;
friend class forward_task_bypass< my_class >;
class my_operation : public aggregated_operation< my_operation > {
public:
char type;
union {
input_type *elem;
predecessor_type *r;
};
tbb::task *bypass_t;
my_operation(const input_type& e, op_type t) :
type(char(t)), elem(const_cast<input_type*>(&e)) {}
my_operation(op_type t) : type(char(t)), r(NULL) {}
};
bool forwarder_busy;
typedef internal::aggregating_functor<my_class, my_operation> my_handler;
friend class internal::aggregating_functor<my_class, my_operation>;
aggregator< my_handler, my_operation > my_aggregator;
void handle_operations(my_operation *op_list) {
my_operation *tmp;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case reg_pred:
my_predecessors.add(*(tmp->r));
__TBB_store_with_release(tmp->status, SUCCEEDED);
if (!forwarder_busy) {
forwarder_busy = true;
spawn_forward_task();
}
break;
case rem_pred:
my_predecessors.remove(*(tmp->r));
__TBB_store_with_release(tmp->status, SUCCEEDED);
break;
case app_body:
__TBB_ASSERT(my_max_concurrency != 0, NULL);
--my_concurrency;
__TBB_store_with_release(tmp->status, SUCCEEDED);
if (my_concurrency<my_max_concurrency) {
input_type i;
bool item_was_retrieved = false;
if ( my_queue )
item_was_retrieved = my_queue->pop(i);
else
item_was_retrieved = my_predecessors.get_item(i);
if (item_was_retrieved) {
++my_concurrency;
spawn_body_task(i);
}
}
break;
case app_body_bypass: {
task * new_task = NULL;
__TBB_ASSERT(my_max_concurrency != 0, NULL);
--my_concurrency;
if (my_concurrency<my_max_concurrency) {
input_type i;
bool item_was_retrieved = false;
if ( my_queue )
item_was_retrieved = my_queue->pop(i);
else
item_was_retrieved = my_predecessors.get_item(i);
if (item_was_retrieved) {
++my_concurrency;
new_task = create_body_task(i);
}
}
tmp->bypass_t = new_task;
__TBB_store_with_release(tmp->status, SUCCEEDED);
}
break;
case tryput_bypass: internal_try_put_task(tmp); break;
case try_fwd: internal_forward(tmp); break;
}
}
}
//! Put to the node, but return the task instead of enqueueing it
void internal_try_put_task(my_operation *op) {
__TBB_ASSERT(my_max_concurrency != 0, NULL);
if (my_concurrency < my_max_concurrency) {
++my_concurrency;
task * new_task = create_body_task(*(op->elem));
op->bypass_t = new_task;
__TBB_store_with_release(op->status, SUCCEEDED);
} else if ( my_queue && my_queue->push(*(op->elem)) ) {
op->bypass_t = SUCCESSFULLY_ENQUEUED;
__TBB_store_with_release(op->status, SUCCEEDED);
} else {
op->bypass_t = NULL;
__TBB_store_with_release(op->status, FAILED);
}
}
//! Tries to spawn bodies if available and if concurrency allows
void internal_forward(my_operation *op) {
op->bypass_t = NULL;
if (my_concurrency<my_max_concurrency || !my_max_concurrency) {
input_type i;
bool item_was_retrieved = false;
if ( my_queue )
item_was_retrieved = my_queue->pop(i);
else
item_was_retrieved = my_predecessors.get_item(i);
if (item_was_retrieved) {
++my_concurrency;
op->bypass_t = create_body_task(i);
__TBB_store_with_release(op->status, SUCCEEDED);
return;
}
}
__TBB_store_with_release(op->status, FAILED);
forwarder_busy = false;
}
//! Applies the body to the provided input
// then decides if more work is available
void apply_body( input_type &i ) {
task *new_task = apply_body_bypass(i);
if(!new_task) return;
if(new_task == SUCCESSFULLY_ENQUEUED) return;
task::enqueue(*new_task);
return;
}
//! Applies the body to the provided input
// then decides if more work is available
task * apply_body_bypass( input_type &i ) {
task * new_task = static_cast<ImplType *>(this)->apply_body_impl_bypass(i);
if ( my_max_concurrency != 0 ) {
my_operation op_data(app_body_bypass); // tries to pop an item or get_item, enqueues another apply_body
my_aggregator.execute(&op_data);
tbb::task *ttask = op_data.bypass_t;
new_task = combine_tasks(new_task, ttask);
}
return new_task;
}
//! allocates a task to call apply_body( input )
inline task * create_body_task( const input_type &input ) {
return new(task::allocate_additional_child_of(*my_root_task))
apply_body_task_bypass < my_class, input_type >(*this, input);
}
//! Spawns a task that calls apply_body( input )
inline void spawn_body_task( const input_type &input ) {
task::enqueue(*create_body_task(input));
}
//! This is executed by an enqueued task, the "forwarder"
task *forward_task() {
my_operation op_data(try_fwd);
task *rval = NULL;
do {
op_data.status = WAIT;
my_aggregator.execute(&op_data);
if(op_data.status == SUCCEEDED) {
tbb::task *ttask = op_data.bypass_t;
rval = combine_tasks(rval, ttask);
}
} while (op_data.status == SUCCEEDED);
return rval;
}
inline task *create_forward_task() {
task *rval = new(task::allocate_additional_child_of(*my_root_task)) forward_task_bypass< my_class >(*this);
return rval;
}
//! Spawns a task that calls forward()
inline void spawn_forward_task() {
task::enqueue(*create_forward_task());
}
}; // function_input_base
//! Implements methods for a function node that takes a type Input as input and sends
// a type Output to its successors.
template< typename Input, typename Output, typename A>
class function_input : public function_input_base<Input, A, function_input<Input,Output,A> > {
public:
typedef Input input_type;
typedef Output output_type;
typedef function_input<Input,Output,A> my_class;
typedef function_input_base<Input, A, my_class> base_type;
typedef function_input_queue<input_type, A> input_queue_type;
// constructor
template<typename Body>
function_input( graph &g, size_t max_concurrency, Body& body, function_input_queue<input_type,A> *q = NULL ) :
base_type(g, max_concurrency, q),
my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) {
}
//! Copy constructor
function_input( const function_input& src, input_queue_type *q = NULL ) :
base_type(src, q),
my_body( src.my_body->clone() ) {
}
~function_input() {
delete my_body;
}
template< typename Body >
Body copy_function_object() {
internal::function_body<input_type, output_type> &body_ref = *this->my_body;
return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
}
task * apply_body_impl_bypass( const input_type &i) {
task * new_task = successors().try_put_task( (*my_body)(i) );
return new_task;
}
protected:
void reset_function_input() {
base_type::reset_function_input_base();
}
function_body<input_type, output_type> *my_body;
virtual broadcast_cache<output_type > &successors() = 0;
};
//! Implements methods for a function node that takes a type Input as input
// and has a tuple of output ports specified.
template< typename Input, typename OutputPortSet, typename A>
class multifunction_input : public function_input_base<Input, A, multifunction_input<Input,OutputPortSet,A> > {
public:
typedef Input input_type;
typedef OutputPortSet output_ports_type;
typedef multifunction_input<Input,OutputPortSet,A> my_class;
typedef function_input_base<Input, A, my_class> base_type;
typedef function_input_queue<input_type, A> input_queue_type;
// constructor
template<typename Body>
multifunction_input(
graph &g,
size_t max_concurrency,
Body& body,
function_input_queue<input_type,A> *q = NULL ) :
base_type(g, max_concurrency, q),
my_body( new internal::multifunction_body_leaf<input_type, output_ports_type, Body>(body) ) {
}
//! Copy constructor
multifunction_input( const multifunction_input& src, input_queue_type *q = NULL ) :
base_type(src, q),
my_body( src.my_body->clone() ) {
}
~multifunction_input() {
delete my_body;
}
template< typename Body >
Body copy_function_object() {
internal::multifunction_body<input_type, output_ports_type> &body_ref = *this->my_body;
return dynamic_cast< internal::multifunction_body_leaf<input_type, output_ports_type, Body> & >(body_ref).get_body();
}
// for multifunction nodes we do not have a single successor as such. So we just tell
// the task we were successful.
task * apply_body_impl_bypass( const input_type &i) {
(*my_body)(i, my_output_ports);
task * new_task = SUCCESSFULLY_ENQUEUED;
return new_task;
}
output_ports_type &output_ports(){ return my_output_ports; }
protected:
void reset() {
base_type::reset_function_input_base();
}
multifunction_body<input_type, output_ports_type> *my_body;
output_ports_type my_output_ports;
};
// template to refer to an output port of a multifunction_node
template<size_t N, typename MOP>
typename tbb::flow::tuple_element<N, typename MOP::output_ports_type>::type &output_port(MOP &op) {
return tbb::flow::get<N>(op.output_ports());
}
// helper structs for split_node
template<int N>
struct emit_element {
template<typename T, typename P>
static void emit_this(const T &t, P &p) {
(void)tbb::flow::get<N-1>(p).try_put(tbb::flow::get<N-1>(t));
emit_element<N-1>::emit_this(t,p);
}
};
template<>
struct emit_element<1> {
template<typename T, typename P>
static void emit_this(const T &t, P &p) {
(void)tbb::flow::get<0>(p).try_put(tbb::flow::get<0>(t));
}
};
//! Implements methods for an executable node that takes continue_msg as input
template< typename Output >
class continue_input : public continue_receiver {
public:
//! The input type of this receiver
typedef continue_msg input_type;
//! The output type of this receiver
typedef Output output_type;
template< typename Body >
continue_input( graph &g, Body& body )
: my_root_task(g.root_task()),
my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { }
template< typename Body >
continue_input( graph &g, int number_of_predecessors, Body& body )
: continue_receiver( number_of_predecessors ), my_root_task(g.root_task()),
my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { }
continue_input( const continue_input& src ) : continue_receiver(src),
my_root_task(src.my_root_task), my_body( src.my_body->clone() ) {}
template< typename Body >
Body copy_function_object() {
internal::function_body<input_type, output_type> &body_ref = *my_body;
return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
}
protected:
task *my_root_task;
function_body<input_type, output_type> *my_body;
virtual broadcast_cache<output_type > &successors() = 0;
friend class apply_body_task_bypass< continue_input< Output >, continue_msg >;
//! Applies the body to the provided input
/* override */ task *apply_body_bypass( input_type ) {
return successors().try_put_task( (*my_body)( continue_msg() ) );
}
//! Spawns a task that applies the body
/* override */ task *execute( ) {
task *res = new ( task::allocate_additional_child_of( *my_root_task ) )
apply_body_task_bypass< continue_input< Output >, continue_msg >( *this, continue_msg() );
return res;
}
};
//! Implements methods for both executable and function nodes that puts Output to its successors
template< typename Output >
class function_output : public sender<Output> {
public:
typedef Output output_type;
function_output() { my_successors.set_owner(this); }
function_output(const function_output & /*other*/) : sender<output_type>() {
my_successors.set_owner(this);
}
//! Adds a new successor to this node
/* override */ bool register_successor( receiver<output_type> &r ) {
successors().register_successor( r );
return true;
}
//! Removes a successor from this node
/* override */ bool remove_successor( receiver<output_type> &r ) {
successors().remove_successor( r );
return true;
}
// for multifunction_node. The function_body that implements
// the node will have an input and an output tuple of ports. To put
// an item to a successor, the body should
//
// get<I>(output_ports).try_put(output_value);
//
// return value will be bool returned from successors.try_put.
task *try_put_task(const output_type &i) { return my_successors.try_put_task(i); }
protected:
broadcast_cache<output_type> my_successors;
broadcast_cache<output_type > &successors() { return my_successors; }
};
template< typename Output >
class multifunction_output : public function_output<Output> {
public:
typedef Output output_type;
typedef function_output<output_type> base_type;
using base_type::my_successors;
multifunction_output() : base_type() {my_successors.set_owner(this);}
multifunction_output( const multifunction_output &/*other*/) : base_type() { my_successors.set_owner(this); }
bool try_put(const output_type &i) {
task *res = my_successors.try_put_task(i);
if(!res) return false;
if(res != SUCCESSFULLY_ENQUEUED) task::enqueue(*res);
return true;
}
};
} // internal
#endif // __TBB__flow_graph_node_impl_H