Current File : //proc/self/root/usr/include/boost/geometry/algorithms/disjoint.hpp |
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DISJOINT_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DISJOINT_HPP
#include <cstddef>
#include <deque>
#include <boost/mpl/if.hpp>
#include <boost/range.hpp>
#include <boost/static_assert.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/coordinate_dimension.hpp>
#include <boost/geometry/core/reverse_dispatch.hpp>
#include <boost/geometry/algorithms/detail/disjoint.hpp>
#include <boost/geometry/algorithms/detail/for_each_range.hpp>
#include <boost/geometry/algorithms/detail/point_on_border.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_turns.hpp>
#include <boost/geometry/algorithms/within.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/util/math.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace disjoint
{
template<typename Geometry>
struct check_each_ring_for_within
{
bool has_within;
Geometry const& m_geometry;
inline check_each_ring_for_within(Geometry const& g)
: has_within(false)
, m_geometry(g)
{}
template <typename Range>
inline void apply(Range const& range)
{
typename geometry::point_type<Range>::type p;
geometry::point_on_border(p, range);
if (geometry::within(p, m_geometry))
{
has_within = true;
}
}
};
template <typename FirstGeometry, typename SecondGeometry>
inline bool rings_containing(FirstGeometry const& geometry1,
SecondGeometry const& geometry2)
{
check_each_ring_for_within<FirstGeometry> checker(geometry1);
geometry::detail::for_each_range(geometry2, checker);
return checker.has_within;
}
struct assign_disjoint_policy
{
// We want to include all points:
static bool const include_no_turn = true;
static bool const include_degenerate = true;
static bool const include_opposite = true;
// We don't assign extra info:
template
<
typename Info,
typename Point1,
typename Point2,
typename IntersectionInfo,
typename DirInfo
>
static inline void apply(Info& , Point1 const& , Point2 const&,
IntersectionInfo const&, DirInfo const&)
{}
};
template <typename Geometry1, typename Geometry2>
struct disjoint_linear
{
static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2)
{
typedef typename geometry::point_type<Geometry1>::type point_type;
typedef overlay::turn_info<point_type> turn_info;
std::deque<turn_info> turns;
// Specify two policies:
// 1) Stop at any intersection
// 2) In assignment, include also degenerate points (which are normally skipped)
disjoint_interrupt_policy policy;
geometry::get_turns
<
false, false,
assign_disjoint_policy
>(geometry1, geometry2, turns, policy);
if (policy.has_intersections)
{
return false;
}
return true;
}
};
template <typename Segment1, typename Segment2>
struct disjoint_segment
{
static inline bool apply(Segment1 const& segment1, Segment2 const& segment2)
{
typedef typename point_type<Segment1>::type point_type;
segment_intersection_points<point_type> is
= strategy::intersection::relate_cartesian_segments
<
policies::relate::segments_intersection_points
<
Segment1,
Segment2,
segment_intersection_points<point_type>
>
>::apply(segment1, segment2);
return is.count == 0;
}
};
template <typename Geometry1, typename Geometry2>
struct general_areal
{
static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2)
{
if (! disjoint_linear<Geometry1, Geometry2>::apply(geometry1, geometry2))
{
return false;
}
// If there is no intersection of segments, they might located
// inside each other
if (rings_containing(geometry1, geometry2)
|| rings_containing(geometry2, geometry1))
{
return false;
}
return true;
}
};
}} // namespace detail::disjoint
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry1, typename Geometry2,
std::size_t DimensionCount = dimension<Geometry1>::type::value,
typename Tag1 = typename tag<Geometry1>::type,
typename Tag2 = typename tag<Geometry2>::type,
bool Reverse = reverse_dispatch<Geometry1, Geometry2>::type::value
>
struct disjoint
: detail::disjoint::general_areal<Geometry1, Geometry2>
{};
// If reversal is needed, perform it
template
<
typename Geometry1, typename Geometry2,
std::size_t DimensionCount,
typename Tag1, typename Tag2
>
struct disjoint<Geometry1, Geometry2, DimensionCount, Tag1, Tag2, true>
: disjoint<Geometry2, Geometry1, DimensionCount, Tag2, Tag1, false>
{
static inline bool apply(Geometry1 const& g1, Geometry2 const& g2)
{
return disjoint
<
Geometry2, Geometry1,
DimensionCount,
Tag2, Tag1
>::apply(g2, g1);
}
};
template <typename Point1, typename Point2, std::size_t DimensionCount, bool Reverse>
struct disjoint<Point1, Point2, DimensionCount, point_tag, point_tag, Reverse>
: detail::disjoint::point_point<Point1, Point2, 0, DimensionCount>
{};
template <typename Box1, typename Box2, std::size_t DimensionCount, bool Reverse>
struct disjoint<Box1, Box2, DimensionCount, box_tag, box_tag, Reverse>
: detail::disjoint::box_box<Box1, Box2, 0, DimensionCount>
{};
template <typename Point, typename Box, std::size_t DimensionCount, bool Reverse>
struct disjoint<Point, Box, DimensionCount, point_tag, box_tag, Reverse>
: detail::disjoint::point_box<Point, Box, 0, DimensionCount>
{};
template <typename Point, typename Ring, std::size_t DimensionCount, bool Reverse>
struct disjoint<Point, Ring, DimensionCount, point_tag, ring_tag, Reverse>
: detail::disjoint::reverse_covered_by<Point, Ring>
{};
template <typename Point, typename Polygon, std::size_t DimensionCount, bool Reverse>
struct disjoint<Point, Polygon, DimensionCount, point_tag, polygon_tag, Reverse>
: detail::disjoint::reverse_covered_by<Point, Polygon>
{};
template <typename Linestring1, typename Linestring2, bool Reverse>
struct disjoint<Linestring1, Linestring2, 2, linestring_tag, linestring_tag, Reverse>
: detail::disjoint::disjoint_linear<Linestring1, Linestring2>
{};
template <typename Linestring1, typename Linestring2, bool Reverse>
struct disjoint<Linestring1, Linestring2, 2, segment_tag, segment_tag, Reverse>
: detail::disjoint::disjoint_segment<Linestring1, Linestring2>
{};
template <typename Linestring, typename Segment, bool Reverse>
struct disjoint<Linestring, Segment, 2, linestring_tag, segment_tag, Reverse>
: detail::disjoint::disjoint_linear<Linestring, Segment>
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
/*!
\brief \brief_check2{are disjoint}
\ingroup disjoint
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\return \return_check2{are disjoint}
\qbk{[include reference/algorithms/disjoint.qbk]}
*/
template <typename Geometry1, typename Geometry2>
inline bool disjoint(Geometry1 const& geometry1,
Geometry2 const& geometry2)
{
concept::check_concepts_and_equal_dimensions
<
Geometry1 const,
Geometry2 const
>();
return dispatch::disjoint<Geometry1, Geometry2>::apply(geometry1, geometry2);
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DISJOINT_HPP