Current File : //proc/self/root/usr/include/boost/geometry/algorithms/detail/overlay/intersection_insert.hpp |
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_INTERSECTION_INSERT_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_INTERSECTION_INSERT_HPP
#include <cstddef>
#include <boost/mpl/if.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/range/metafunctions.hpp>
#include <boost/geometry/core/is_areal.hpp>
#include <boost/geometry/core/point_order.hpp>
#include <boost/geometry/core/reverse_dispatch.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/algorithms/convert.hpp>
#include <boost/geometry/algorithms/detail/point_on_border.hpp>
#include <boost/geometry/algorithms/detail/overlay/clip_linestring.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_intersection_points.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay_type.hpp>
#include <boost/geometry/algorithms/detail/overlay/follow.hpp>
#include <boost/geometry/views/segment_view.hpp>
#if defined(BOOST_GEOMETRY_DEBUG_FOLLOW)
#include <boost/foreach.hpp>
#endif
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace intersection
{
template <typename PointOut>
struct intersection_segment_segment_point
{
template
<
typename Segment1, typename Segment2,
typename OutputIterator, typename Strategy
>
static inline OutputIterator apply(Segment1 const& segment1,
Segment2 const& segment2, OutputIterator out,
Strategy const& )
{
typedef typename point_type<PointOut>::type point_type;
// Get the intersection point (or two points)
segment_intersection_points<point_type> is
= strategy::intersection::relate_cartesian_segments
<
policies::relate::segments_intersection_points
<
Segment1,
Segment2,
segment_intersection_points<point_type>
>
>::apply(segment1, segment2);
for (std::size_t i = 0; i < is.count; i++)
{
PointOut p;
geometry::convert(is.intersections[i], p);
*out++ = p;
}
return out;
}
};
template <typename PointOut>
struct intersection_linestring_linestring_point
{
template
<
typename Linestring1, typename Linestring2,
typename OutputIterator, typename Strategy
>
static inline OutputIterator apply(Linestring1 const& linestring1,
Linestring2 const& linestring2, OutputIterator out,
Strategy const& )
{
typedef typename point_type<PointOut>::type point_type;
typedef detail::overlay::turn_info<point_type> turn_info;
std::deque<turn_info> turns;
geometry::get_intersection_points(linestring1, linestring2, turns);
for (typename boost::range_iterator<std::deque<turn_info> const>::type
it = boost::begin(turns); it != boost::end(turns); ++it)
{
PointOut p;
geometry::convert(it->point, p);
*out++ = p;
}
return out;
}
};
/*!
\brief Version of linestring with an areal feature (polygon or multipolygon)
*/
template
<
bool ReverseAreal,
typename LineStringOut,
overlay_type OverlayType
>
struct intersection_of_linestring_with_areal
{
#if defined(BOOST_GEOMETRY_DEBUG_FOLLOW)
template <typename Turn, typename Operation>
static inline void debug_follow(Turn const& turn, Operation op,
int index)
{
std::cout << index
<< " at " << op.seg_id
<< " meth: " << method_char(turn.method)
<< " op: " << operation_char(op.operation)
<< " vis: " << visited_char(op.visited)
<< " of: " << operation_char(turn.operations[0].operation)
<< operation_char(turn.operations[1].operation)
<< " " << geometry::wkt(turn.point)
<< std::endl;
}
#endif
template
<
typename LineString, typename Areal,
typename OutputIterator, typename Strategy
>
static inline OutputIterator apply(LineString const& linestring, Areal const& areal,
OutputIterator out,
Strategy const& )
{
if (boost::size(linestring) == 0)
{
return out;
}
typedef detail::overlay::follow
<
LineStringOut,
LineString,
Areal,
OverlayType
> follower;
typedef typename point_type<LineStringOut>::type point_type;
typedef detail::overlay::traversal_turn_info<point_type> turn_info;
std::deque<turn_info> turns;
detail::get_turns::no_interrupt_policy policy;
geometry::get_turns
<
false,
(OverlayType == overlay_intersection ? ReverseAreal : !ReverseAreal),
detail::overlay::calculate_distance_policy
>(linestring, areal, turns, policy);
if (turns.empty())
{
// No intersection points, it is either completely
// inside (interior + borders)
// or completely outside
// Use border point (on a segment) to check this
// (because turn points might skip some cases)
point_type border_point;
if (! geometry::point_on_border(border_point, linestring, true))
{
return out;
}
if (follower::included(border_point, areal))
{
LineStringOut copy;
geometry::convert(linestring, copy);
*out++ = copy;
}
return out;
}
#if defined(BOOST_GEOMETRY_DEBUG_FOLLOW)
int index = 0;
BOOST_FOREACH(turn_info const& turn, turns)
{
debug_follow(turn, turn.operations[0], index++);
}
#endif
return follower::apply
(
linestring, areal,
geometry::detail::overlay::operation_intersection,
turns, out
);
}
};
}} // namespace detail::intersection
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
// real types
typename Geometry1, typename Geometry2,
typename GeometryOut,
overlay_type OverlayType,
// orientation
bool Reverse1 = detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value,
bool Reverse2 = detail::overlay::do_reverse<geometry::point_order<Geometry2>::value>::value,
bool ReverseOut = detail::overlay::do_reverse<geometry::point_order<GeometryOut>::value>::value,
// tag dispatching:
typename TagIn1 = typename geometry::tag<Geometry1>::type,
typename TagIn2 = typename geometry::tag<Geometry2>::type,
typename TagOut = typename geometry::tag<GeometryOut>::type,
// metafunction finetuning helpers:
bool Areal1 = geometry::is_areal<Geometry1>::value,
bool Areal2 = geometry::is_areal<Geometry2>::value,
bool ArealOut = geometry::is_areal<GeometryOut>::value
>
struct intersection_insert
{
BOOST_MPL_ASSERT_MSG
(
false, NOT_OR_NOT_YET_IMPLEMENTED_FOR_THIS_GEOMETRY_TYPES_OR_ORIENTATIONS
, (types<Geometry1, Geometry2, GeometryOut>)
);
};
template
<
typename Geometry1, typename Geometry2,
typename GeometryOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut,
typename TagIn1, typename TagIn2, typename TagOut
>
struct intersection_insert
<
Geometry1, Geometry2,
GeometryOut,
OverlayType,
Reverse1, Reverse2, ReverseOut,
TagIn1, TagIn2, TagOut,
true, true, true
> : detail::overlay::overlay
<Geometry1, Geometry2, Reverse1, Reverse2, ReverseOut, GeometryOut, OverlayType>
{};
// Any areal type with box:
template
<
typename Geometry, typename Box,
typename GeometryOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut,
typename TagIn, typename TagOut
>
struct intersection_insert
<
Geometry, Box,
GeometryOut,
OverlayType,
Reverse1, Reverse2, ReverseOut,
TagIn, box_tag, TagOut,
true, true, true
> : detail::overlay::overlay
<Geometry, Box, Reverse1, Reverse2, ReverseOut, GeometryOut, OverlayType>
{};
template
<
typename Segment1, typename Segment2,
typename GeometryOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct intersection_insert
<
Segment1, Segment2,
GeometryOut,
OverlayType,
Reverse1, Reverse2, ReverseOut,
segment_tag, segment_tag, point_tag,
false, false, false
> : detail::intersection::intersection_segment_segment_point<GeometryOut>
{};
template
<
typename Linestring1, typename Linestring2,
typename GeometryOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct intersection_insert
<
Linestring1, Linestring2,
GeometryOut,
OverlayType,
Reverse1, Reverse2, ReverseOut,
linestring_tag, linestring_tag, point_tag,
false, false, false
> : detail::intersection::intersection_linestring_linestring_point<GeometryOut>
{};
template
<
typename Linestring, typename Box,
typename GeometryOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct intersection_insert
<
Linestring, Box,
GeometryOut,
OverlayType,
Reverse1, Reverse2, ReverseOut,
linestring_tag, box_tag, linestring_tag,
false, true, false
>
{
template <typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Linestring const& linestring,
Box const& box, OutputIterator out, Strategy const& )
{
typedef typename point_type<GeometryOut>::type point_type;
strategy::intersection::liang_barsky<Box, point_type> lb_strategy;
return detail::intersection::clip_range_with_box
<GeometryOut>(box, linestring, out, lb_strategy);
}
};
template
<
typename Linestring, typename Polygon,
typename GeometryOut,
overlay_type OverlayType,
bool ReverseLinestring, bool ReversePolygon, bool ReverseOut
>
struct intersection_insert
<
Linestring, Polygon,
GeometryOut,
OverlayType,
ReverseLinestring, ReversePolygon, ReverseOut,
linestring_tag, polygon_tag, linestring_tag,
false, true, false
> : detail::intersection::intersection_of_linestring_with_areal
<
ReversePolygon,
GeometryOut,
OverlayType
>
{};
template
<
typename Linestring, typename Ring,
typename GeometryOut,
overlay_type OverlayType,
bool ReverseLinestring, bool ReverseRing, bool ReverseOut
>
struct intersection_insert
<
Linestring, Ring,
GeometryOut,
OverlayType,
ReverseLinestring, ReverseRing, ReverseOut,
linestring_tag, ring_tag, linestring_tag,
false, true, false
> : detail::intersection::intersection_of_linestring_with_areal
<
ReverseRing,
GeometryOut,
OverlayType
>
{};
template
<
typename Segment, typename Box,
typename GeometryOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct intersection_insert
<
Segment, Box,
GeometryOut,
OverlayType,
Reverse1, Reverse2, ReverseOut,
segment_tag, box_tag, linestring_tag,
false, true, false
>
{
template <typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Segment const& segment,
Box const& box, OutputIterator out, Strategy const& )
{
geometry::segment_view<Segment> range(segment);
typedef typename point_type<GeometryOut>::type point_type;
strategy::intersection::liang_barsky<Box, point_type> lb_strategy;
return detail::intersection::clip_range_with_box
<GeometryOut>(box, range, out, lb_strategy);
}
};
template
<
typename Geometry1, typename Geometry2,
typename PointOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut,
typename Tag1, typename Tag2,
bool Areal1, bool Areal2
>
struct intersection_insert
<
Geometry1, Geometry2,
PointOut,
OverlayType,
Reverse1, Reverse2, ReverseOut,
Tag1, Tag2, point_tag,
Areal1, Areal2, false
>
{
template <typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& geometry1,
Geometry2 const& geometry2, OutputIterator out, Strategy const& )
{
typedef detail::overlay::turn_info<PointOut> turn_info;
std::vector<turn_info> turns;
detail::get_turns::no_interrupt_policy policy;
geometry::get_turns
<
false, false, detail::overlay::assign_null_policy
>(geometry1, geometry2, turns, policy);
for (typename std::vector<turn_info>::const_iterator it
= turns.begin(); it != turns.end(); ++it)
{
*out++ = it->point;
}
return out;
}
};
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
overlay_type OverlayType,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct intersection_insert_reversed
{
template <typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& g1,
Geometry2 const& g2, OutputIterator out,
Strategy const& strategy)
{
return intersection_insert
<
Geometry2, Geometry1, GeometryOut,
OverlayType,
Reverse2, Reverse1, ReverseOut
>::apply(g2, g1, out, strategy);
}
};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace intersection
{
template
<
typename GeometryOut,
bool ReverseSecond,
overlay_type OverlayType,
typename Geometry1, typename Geometry2,
typename OutputIterator,
typename Strategy
>
inline OutputIterator insert(Geometry1 const& geometry1,
Geometry2 const& geometry2,
OutputIterator out,
Strategy const& strategy)
{
return boost::mpl::if_c
<
geometry::reverse_dispatch<Geometry1, Geometry2>::type::value,
geometry::dispatch::intersection_insert_reversed
<
Geometry1, Geometry2,
GeometryOut,
OverlayType,
overlay::do_reverse<geometry::point_order<Geometry1>::value>::value,
overlay::do_reverse<geometry::point_order<Geometry2>::value, ReverseSecond>::value,
overlay::do_reverse<geometry::point_order<GeometryOut>::value>::value
>,
geometry::dispatch::intersection_insert
<
Geometry1, Geometry2,
GeometryOut,
OverlayType,
geometry::detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value,
geometry::detail::overlay::do_reverse<geometry::point_order<Geometry2>::value, ReverseSecond>::value
>
>::type::apply(geometry1, geometry2, out, strategy);
}
/*!
\brief \brief_calc2{intersection} \brief_strategy
\ingroup intersection
\details \details_calc2{intersection_insert, spatial set theoretic intersection}
\brief_strategy. \details_insert{intersection}
\tparam GeometryOut \tparam_geometry{\p_l_or_c}
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam OutputIterator \tparam_out{\p_l_or_c}
\tparam Strategy \tparam_strategy_overlay
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param out \param_out{intersection}
\param strategy \param_strategy{intersection}
\return \return_out
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/intersection.qbk]}
*/
template
<
typename GeometryOut,
typename Geometry1,
typename Geometry2,
typename OutputIterator,
typename Strategy
>
inline OutputIterator intersection_insert(Geometry1 const& geometry1,
Geometry2 const& geometry2,
OutputIterator out,
Strategy const& strategy)
{
concept::check<Geometry1 const>();
concept::check<Geometry2 const>();
return detail::intersection::insert
<
GeometryOut, false, overlay_intersection
>(geometry1, geometry2, out, strategy);
}
/*!
\brief \brief_calc2{intersection}
\ingroup intersection
\details \details_calc2{intersection_insert, spatial set theoretic intersection}.
\details_insert{intersection}
\tparam GeometryOut \tparam_geometry{\p_l_or_c}
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam OutputIterator \tparam_out{\p_l_or_c}
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param out \param_out{intersection}
\return \return_out
\qbk{[include reference/algorithms/intersection.qbk]}
*/
template
<
typename GeometryOut,
typename Geometry1,
typename Geometry2,
typename OutputIterator
>
inline OutputIterator intersection_insert(Geometry1 const& geometry1,
Geometry2 const& geometry2,
OutputIterator out)
{
concept::check<Geometry1 const>();
concept::check<Geometry2 const>();
typedef strategy_intersection
<
typename cs_tag<GeometryOut>::type,
Geometry1,
Geometry2,
typename geometry::point_type<GeometryOut>::type
> strategy;
return intersection_insert<GeometryOut>(geometry1, geometry2, out,
strategy());
}
}} // namespace detail::intersection
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_INTERSECTION_INSERT_HPP