Current File : //proc/self/root/proc/self/root/lib64/python3.4/site-packages/numpy/ma/tests/test_core.py |
# pylint: disable-msg=W0401,W0511,W0611,W0612,W0614,R0201,E1102
"""Tests suite for MaskedArray & subclassing.
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
"""
from __future__ import division, absolute_import, print_function
__author__ = "Pierre GF Gerard-Marchant"
import warnings
import pickle
import operator
import itertools
from functools import reduce
import numpy as np
import numpy.ma.core
import numpy.core.fromnumeric as fromnumeric
import numpy.core.umath as umath
from numpy.testing import (
TestCase, run_module_suite, assert_raises, assert_warns, suppress_warnings)
from numpy import ndarray
from numpy.compat import asbytes, asbytes_nested
from numpy.ma.testutils import (
assert_, assert_array_equal, assert_equal, assert_almost_equal,
assert_equal_records, fail_if_equal, assert_not_equal,
assert_mask_equal
)
from numpy.ma.core import (
MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all,
allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2,
arcsin, arctan, argsort, array, asarray, choose, concatenate,
conjugate, cos, cosh, count, default_fill_value, diag, divide, empty,
empty_like, equal, exp, flatten_mask, filled, fix_invalid,
flatten_structured_array, fromflex, getmask, getmaskarray, greater,
greater_equal, identity, inner, isMaskedArray, less, less_equal, log,
log10, make_mask, make_mask_descr, mask_or, masked, masked_array,
masked_equal, masked_greater, masked_greater_equal, masked_inside,
masked_less, masked_less_equal, masked_not_equal, masked_outside,
masked_print_option, masked_values, masked_where, max, maximum,
maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply,
mvoid, nomask, not_equal, ones, outer, power, product, put, putmask,
ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt,
subtract, sum, take, tan, tanh, transpose, where, zeros,
)
pi = np.pi
suppress_copy_mask_on_assignment = suppress_warnings()
suppress_copy_mask_on_assignment.filter(
numpy.ma.core.MaskedArrayFutureWarning,
"setting an item on a masked array which has a shared mask will not copy")
class TestMaskedArray(TestCase):
# Base test class for MaskedArrays.
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
def test_basicattributes(self):
# Tests some basic array attributes.
a = array([1, 3, 2])
b = array([1, 3, 2], mask=[1, 0, 1])
assert_equal(a.ndim, 1)
assert_equal(b.ndim, 1)
assert_equal(a.size, 3)
assert_equal(b.size, 3)
assert_equal(a.shape, (3,))
assert_equal(b.shape, (3,))
def test_basic0d(self):
# Checks masking a scalar
x = masked_array(0)
assert_equal(str(x), '0')
x = masked_array(0, mask=True)
assert_equal(str(x), str(masked_print_option))
x = masked_array(0, mask=False)
assert_equal(str(x), '0')
x = array(0, mask=1)
self.assertTrue(x.filled().dtype is x._data.dtype)
def test_basic1d(self):
# Test of basic array creation and properties in 1 dimension.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
self.assertTrue(not isMaskedArray(x))
self.assertTrue(isMaskedArray(xm))
self.assertTrue((xm - ym).filled(0).any())
fail_if_equal(xm.mask.astype(int), ym.mask.astype(int))
s = x.shape
assert_equal(np.shape(xm), s)
assert_equal(xm.shape, s)
assert_equal(xm.dtype, x.dtype)
assert_equal(zm.dtype, z.dtype)
assert_equal(xm.size, reduce(lambda x, y:x * y, s))
assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
assert_array_equal(xm, xf)
assert_array_equal(filled(xm, 1.e20), xf)
assert_array_equal(x, xm)
def test_basic2d(self):
# Test of basic array creation and properties in 2 dimensions.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
for s in [(4, 3), (6, 2)]:
x.shape = s
y.shape = s
xm.shape = s
ym.shape = s
xf.shape = s
self.assertTrue(not isMaskedArray(x))
self.assertTrue(isMaskedArray(xm))
assert_equal(shape(xm), s)
assert_equal(xm.shape, s)
assert_equal(xm.size, reduce(lambda x, y:x * y, s))
assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
assert_equal(xm, xf)
assert_equal(filled(xm, 1.e20), xf)
assert_equal(x, xm)
def test_concatenate_basic(self):
# Tests concatenations.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
# basic concatenation
assert_equal(np.concatenate((x, y)), concatenate((xm, ym)))
assert_equal(np.concatenate((x, y)), concatenate((x, y)))
assert_equal(np.concatenate((x, y)), concatenate((xm, y)))
assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x)))
def test_concatenate_alongaxis(self):
# Tests concatenations.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
# Concatenation along an axis
s = (3, 4)
x.shape = y.shape = xm.shape = ym.shape = s
assert_equal(xm.mask, np.reshape(m1, s))
assert_equal(ym.mask, np.reshape(m2, s))
xmym = concatenate((xm, ym), 1)
assert_equal(np.concatenate((x, y), 1), xmym)
assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask)
x = zeros(2)
y = array(ones(2), mask=[False, True])
z = concatenate((x, y))
assert_array_equal(z, [0, 0, 1, 1])
assert_array_equal(z.mask, [False, False, False, True])
z = concatenate((y, x))
assert_array_equal(z, [1, 1, 0, 0])
assert_array_equal(z.mask, [False, True, False, False])
def test_concatenate_flexible(self):
# Tests the concatenation on flexible arrays.
data = masked_array(list(zip(np.random.rand(10),
np.arange(10))),
dtype=[('a', float), ('b', int)])
test = concatenate([data[:5], data[5:]])
assert_equal_records(test, data)
def test_creation_ndmin(self):
# Check the use of ndmin
x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2)
assert_equal(x.shape, (1, 3))
assert_equal(x._data, [[1, 2, 3]])
assert_equal(x._mask, [[1, 0, 0]])
def test_creation_ndmin_from_maskedarray(self):
# Make sure we're not losing the original mask w/ ndmin
x = array([1, 2, 3])
x[-1] = masked
xx = array(x, ndmin=2, dtype=float)
assert_equal(x.shape, x._mask.shape)
assert_equal(xx.shape, xx._mask.shape)
def test_creation_maskcreation(self):
# Tests how masks are initialized at the creation of Maskedarrays.
data = arange(24, dtype=float)
data[[3, 6, 15]] = masked
dma_1 = MaskedArray(data)
assert_equal(dma_1.mask, data.mask)
dma_2 = MaskedArray(dma_1)
assert_equal(dma_2.mask, dma_1.mask)
dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6)
fail_if_equal(dma_3.mask, dma_1.mask)
x = array([1, 2, 3], mask=True)
assert_equal(x._mask, [True, True, True])
x = array([1, 2, 3], mask=False)
assert_equal(x._mask, [False, False, False])
y = array([1, 2, 3], mask=x._mask, copy=False)
assert_(np.may_share_memory(x.mask, y.mask))
y = array([1, 2, 3], mask=x._mask, copy=True)
assert_(not np.may_share_memory(x.mask, y.mask))
def test_creation_with_list_of_maskedarrays(self):
# Tests creating a masked array from a list of masked arrays.
x = array(np.arange(5), mask=[1, 0, 0, 0, 0])
data = array((x, x[::-1]))
assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]])
x.mask = nomask
data = array((x, x[::-1]))
assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
self.assertTrue(data.mask is nomask)
def test_creation_from_ndarray_with_padding(self):
x = np.array([('A', 0)], dtype={'names':['f0','f1'],
'formats':['S4','i8'],
'offsets':[0,8]})
data = array(x) # used to fail due to 'V' padding field in x.dtype.descr
def test_asarray(self):
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
xm.fill_value = -9999
xm._hardmask = True
xmm = asarray(xm)
assert_equal(xmm._data, xm._data)
assert_equal(xmm._mask, xm._mask)
assert_equal(xmm.fill_value, xm.fill_value)
assert_equal(xmm._hardmask, xm._hardmask)
def test_asarray_default_order(self):
# See Issue #6646
m = np.eye(3).T
self.assertFalse(m.flags.c_contiguous)
new_m = asarray(m)
self.assertTrue(new_m.flags.c_contiguous)
def test_asarray_enforce_order(self):
# See Issue #6646
m = np.eye(3).T
self.assertFalse(m.flags.c_contiguous)
new_m = asarray(m, order='C')
self.assertTrue(new_m.flags.c_contiguous)
def test_fix_invalid(self):
# Checks fix_invalid.
with np.errstate(invalid='ignore'):
data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1])
data_fixed = fix_invalid(data)
assert_equal(data_fixed._data, [data.fill_value, 0., 1.])
assert_equal(data_fixed._mask, [1., 0., 1.])
def test_maskedelement(self):
# Test of masked element
x = arange(6)
x[1] = masked
self.assertTrue(str(masked) == '--')
self.assertTrue(x[1] is masked)
assert_equal(filled(x[1], 0), 0)
def test_set_element_as_object(self):
# Tests setting elements with object
a = empty(1, dtype=object)
x = (1, 2, 3, 4, 5)
a[0] = x
assert_equal(a[0], x)
self.assertTrue(a[0] is x)
import datetime
dt = datetime.datetime.now()
a[0] = dt
self.assertTrue(a[0] is dt)
def test_indexing(self):
# Tests conversions and indexing
x1 = np.array([1, 2, 4, 3])
x2 = array(x1, mask=[1, 0, 0, 0])
x3 = array(x1, mask=[0, 1, 0, 1])
x4 = array(x1)
# test conversion to strings
str(x2) # raises?
repr(x2) # raises?
assert_equal(np.sort(x1), sort(x2, endwith=False))
# tests of indexing
assert_(type(x2[1]) is type(x1[1]))
assert_(x1[1] == x2[1])
assert_(x2[0] is masked)
assert_equal(x1[2], x2[2])
assert_equal(x1[2:5], x2[2:5])
assert_equal(x1[:], x2[:])
assert_equal(x1[1:], x3[1:])
x1[2] = 9
x2[2] = 9
assert_equal(x1, x2)
x1[1:3] = 99
x2[1:3] = 99
assert_equal(x1, x2)
x2[1] = masked
assert_equal(x1, x2)
x2[1:3] = masked
assert_equal(x1, x2)
x2[:] = x1
x2[1] = masked
assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
assert_(allequal(x4, array([1, 2, 3, 4])))
x1 = np.arange(5) * 1.0
x2 = masked_values(x1, 3.0)
assert_equal(x1, x2)
assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
assert_equal(3.0, x2.fill_value)
x1 = array([1, 'hello', 2, 3], object)
x2 = np.array([1, 'hello', 2, 3], object)
s1 = x1[1]
s2 = x2[1]
assert_equal(type(s2), str)
assert_equal(type(s1), str)
assert_equal(s1, s2)
assert_(x1[1:1].shape == (0,))
def test_matrix_indexing(self):
# Tests conversions and indexing
x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
x2 = array(x1, mask=[[1, 0, 0], [0, 1, 0]])
x3 = array(x1, mask=[[0, 1, 0], [1, 0, 0]])
x4 = array(x1)
# test conversion to strings
str(x2) # raises?
repr(x2) # raises?
# tests of indexing
assert_(type(x2[1, 0]) is type(x1[1, 0]))
assert_(x1[1, 0] == x2[1, 0])
assert_(x2[1, 1] is masked)
assert_equal(x1[0, 2], x2[0, 2])
assert_equal(x1[0, 1:], x2[0, 1:])
assert_equal(x1[:, 2], x2[:, 2])
assert_equal(x1[:], x2[:])
assert_equal(x1[1:], x3[1:])
x1[0, 2] = 9
x2[0, 2] = 9
assert_equal(x1, x2)
x1[0, 1:] = 99
x2[0, 1:] = 99
assert_equal(x1, x2)
x2[0, 1] = masked
assert_equal(x1, x2)
x2[0, 1:] = masked
assert_equal(x1, x2)
x2[0, :] = x1[0, :]
x2[0, 1] = masked
assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
assert_(allequal(getmask(x3)[1], array([1, 1, 0])))
assert_(allequal(getmask(x3[1]), array([1, 1, 0])))
x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
assert_(allequal(getmask(x4[1]), array([1, 1, 0])))
assert_(allequal(x4[1], array([1, 2, 3])))
x1 = np.matrix(np.arange(5) * 1.0)
x2 = masked_values(x1, 3.0)
assert_equal(x1, x2)
assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
assert_equal(3.0, x2.fill_value)
@suppress_copy_mask_on_assignment
def test_copy(self):
# Tests of some subtle points of copying and sizing.
n = [0, 0, 1, 0, 0]
m = make_mask(n)
m2 = make_mask(m)
self.assertTrue(m is m2)
m3 = make_mask(m, copy=1)
self.assertTrue(m is not m3)
x1 = np.arange(5)
y1 = array(x1, mask=m)
assert_equal(y1._data.__array_interface__, x1.__array_interface__)
self.assertTrue(allequal(x1, y1.data))
assert_equal(y1._mask.__array_interface__, m.__array_interface__)
y1a = array(y1)
self.assertTrue(y1a._data.__array_interface__ ==
y1._data.__array_interface__)
self.assertTrue(y1a.mask is y1.mask)
y2 = array(x1, mask=m)
self.assertTrue(y2._data.__array_interface__ == x1.__array_interface__)
self.assertTrue(y2._mask.__array_interface__ == m.__array_interface__)
self.assertTrue(y2[2] is masked)
y2[2] = 9
self.assertTrue(y2[2] is not masked)
self.assertTrue(y2._mask.__array_interface__ != m.__array_interface__)
self.assertTrue(allequal(y2.mask, 0))
y3 = array(x1 * 1.0, mask=m)
self.assertTrue(filled(y3).dtype is (x1 * 1.0).dtype)
x4 = arange(4)
x4[2] = masked
y4 = resize(x4, (8,))
assert_equal(concatenate([x4, x4]), y4)
assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])
y5 = repeat(x4, (2, 2, 2, 2), axis=0)
assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3])
y6 = repeat(x4, 2, axis=0)
assert_equal(y5, y6)
y7 = x4.repeat((2, 2, 2, 2), axis=0)
assert_equal(y5, y7)
y8 = x4.repeat(2, 0)
assert_equal(y5, y8)
y9 = x4.copy()
assert_equal(y9._data, x4._data)
assert_equal(y9._mask, x4._mask)
x = masked_array([1, 2, 3], mask=[0, 1, 0])
# Copy is False by default
y = masked_array(x)
assert_equal(y._data.ctypes.data, x._data.ctypes.data)
assert_equal(y._mask.ctypes.data, x._mask.ctypes.data)
y = masked_array(x, copy=True)
assert_not_equal(y._data.ctypes.data, x._data.ctypes.data)
assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data)
def test_copy_on_python_builtins(self):
# Tests copy works on python builtins (issue#8019)
self.assertTrue(isMaskedArray(np.ma.copy([1,2,3])))
self.assertTrue(isMaskedArray(np.ma.copy((1,2,3))))
def test_copy_immutable(self):
# Tests that the copy method is immutable, GitHub issue #5247
a = np.ma.array([1, 2, 3])
b = np.ma.array([4, 5, 6])
a_copy_method = a.copy
b.copy
assert_equal(a_copy_method(), [1, 2, 3])
def test_deepcopy(self):
from copy import deepcopy
a = array([0, 1, 2], mask=[False, True, False])
copied = deepcopy(a)
assert_equal(copied.mask, a.mask)
assert_not_equal(id(a._mask), id(copied._mask))
copied[1] = 1
assert_equal(copied.mask, [0, 0, 0])
assert_equal(a.mask, [0, 1, 0])
copied = deepcopy(a)
assert_equal(copied.mask, a.mask)
copied.mask[1] = False
assert_equal(copied.mask, [0, 0, 0])
assert_equal(a.mask, [0, 1, 0])
def test_str_repr(self):
a = array([0, 1, 2], mask=[False, True, False])
assert_equal(str(a), '[0 -- 2]')
assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n'
' mask = [False True False],\n'
' fill_value = 999999)\n')
a = np.ma.arange(2000)
a[1:50] = np.ma.masked
assert_equal(
repr(a),
'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n'
' mask = [False True True ..., False False False],\n'
' fill_value = 999999)\n'
)
def test_pickling(self):
# Tests pickling
for dtype in (int, float, str, object):
a = arange(10).astype(dtype)
a.fill_value = 999
masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1], # partially masked
True, # Fully masked
False) # Fully unmasked
for mask in masks:
a.mask = mask
a_pickled = pickle.loads(a.dumps())
assert_equal(a_pickled._mask, a._mask)
assert_equal(a_pickled._data, a._data)
if dtype in (object, int):
assert_equal(a_pickled.fill_value, 999)
else:
assert_equal(a_pickled.fill_value, dtype(999))
assert_array_equal(a_pickled.mask, mask)
def test_pickling_subbaseclass(self):
# Test pickling w/ a subclass of ndarray
a = array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
a_pickled = pickle.loads(a.dumps())
assert_equal(a_pickled._mask, a._mask)
assert_equal(a_pickled, a)
self.assertTrue(isinstance(a_pickled._data, np.matrix))
def test_pickling_maskedconstant(self):
# Test pickling MaskedConstant
mc = np.ma.masked
mc_pickled = pickle.loads(mc.dumps())
assert_equal(mc_pickled._baseclass, mc._baseclass)
assert_equal(mc_pickled._mask, mc._mask)
assert_equal(mc_pickled._data, mc._data)
def test_pickling_wstructured(self):
# Tests pickling w/ structured array
a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)],
dtype=[('a', int), ('b', float)])
a_pickled = pickle.loads(a.dumps())
assert_equal(a_pickled._mask, a._mask)
assert_equal(a_pickled, a)
def test_pickling_keepalignment(self):
# Tests pickling w/ F_CONTIGUOUS arrays
a = arange(10)
a.shape = (-1, 2)
b = a.T
test = pickle.loads(pickle.dumps(b))
assert_equal(test, b)
def test_single_element_subscript(self):
# Tests single element subscripts of Maskedarrays.
a = array([1, 3, 2])
b = array([1, 3, 2], mask=[1, 0, 1])
assert_equal(a[0].shape, ())
assert_equal(b[0].shape, ())
assert_equal(b[1].shape, ())
def test_topython(self):
# Tests some communication issues with Python.
assert_equal(1, int(array(1)))
assert_equal(1.0, float(array(1)))
assert_equal(1, int(array([[[1]]])))
assert_equal(1.0, float(array([[1]])))
self.assertRaises(TypeError, float, array([1, 1]))
with suppress_warnings() as sup:
sup.filter(UserWarning, 'Warning: converting a masked element')
assert_(np.isnan(float(array([1], mask=[1]))))
a = array([1, 2, 3], mask=[1, 0, 0])
self.assertRaises(TypeError, lambda: float(a))
assert_equal(float(a[-1]), 3.)
self.assertTrue(np.isnan(float(a[0])))
self.assertRaises(TypeError, int, a)
assert_equal(int(a[-1]), 3)
self.assertRaises(MAError, lambda:int(a[0]))
def test_oddfeatures_1(self):
# Test of other odd features
x = arange(20)
x = x.reshape(4, 5)
x.flat[5] = 12
assert_(x[1, 0] == 12)
z = x + 10j * x
assert_equal(z.real, x)
assert_equal(z.imag, 10 * x)
assert_equal((z * conjugate(z)).real, 101 * x * x)
z.imag[...] = 0.0
x = arange(10)
x[3] = masked
assert_(str(x[3]) == str(masked))
c = x >= 8
assert_(count(where(c, masked, masked)) == 0)
assert_(shape(where(c, masked, masked)) == c.shape)
z = masked_where(c, x)
assert_(z.dtype is x.dtype)
assert_(z[3] is masked)
assert_(z[4] is not masked)
assert_(z[7] is not masked)
assert_(z[8] is masked)
assert_(z[9] is masked)
assert_equal(x, z)
def test_oddfeatures_2(self):
# Tests some more features.
x = array([1., 2., 3., 4., 5.])
c = array([1, 1, 1, 0, 0])
x[2] = masked
z = where(c, x, -x)
assert_equal(z, [1., 2., 0., -4., -5])
c[0] = masked
z = where(c, x, -x)
assert_equal(z, [1., 2., 0., -4., -5])
assert_(z[0] is masked)
assert_(z[1] is not masked)
assert_(z[2] is masked)
@suppress_copy_mask_on_assignment
def test_oddfeatures_3(self):
# Tests some generic features
atest = array([10], mask=True)
btest = array([20])
idx = atest.mask
atest[idx] = btest[idx]
assert_equal(atest, [20])
def test_filled_with_object_dtype(self):
a = np.ma.masked_all(1, dtype='O')
assert_equal(a.filled('x')[0], 'x')
def test_filled_with_flexible_dtype(self):
# Test filled w/ flexible dtype
flexi = array([(1, 1, 1)],
dtype=[('i', int), ('s', '|S8'), ('f', float)])
flexi[0] = masked
assert_equal(flexi.filled(),
np.array([(default_fill_value(0),
default_fill_value('0'),
default_fill_value(0.),)], dtype=flexi.dtype))
flexi[0] = masked
assert_equal(flexi.filled(1),
np.array([(1, '1', 1.)], dtype=flexi.dtype))
def test_filled_with_mvoid(self):
# Test filled w/ mvoid
ndtype = [('a', int), ('b', float)]
a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype)
# Filled using default
test = a.filled()
assert_equal(tuple(test), (1, default_fill_value(1.)))
# Explicit fill_value
test = a.filled((-1, -1))
assert_equal(tuple(test), (1, -1))
# Using predefined filling values
a.fill_value = (-999, -999)
assert_equal(tuple(a.filled()), (1, -999))
def test_filled_with_nested_dtype(self):
# Test filled w/ nested dtype
ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
a = array([(1, (1, 1)), (2, (2, 2))],
mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype)
test = a.filled(0)
control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype)
assert_equal(test, control)
test = a['B'].filled(0)
control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype)
assert_equal(test, control)
# test if mask gets set correctly (see #6760)
Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))]))
assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)),
('f1', 'i1', (2, 2))], (2, 2))]))
assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)),
('f1', '?', (2, 2))], (2, 2))]))
def test_filled_with_f_order(self):
# Test filled w/ F-contiguous array
a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'),
mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'),
order='F') # this is currently ignored
self.assertTrue(a.flags['F_CONTIGUOUS'])
self.assertTrue(a.filled(0).flags['F_CONTIGUOUS'])
def test_optinfo_propagation(self):
# Checks that _optinfo dictionary isn't back-propagated
x = array([1, 2, 3, ], dtype=float)
x._optinfo['info'] = '???'
y = x.copy()
assert_equal(y._optinfo['info'], '???')
y._optinfo['info'] = '!!!'
assert_equal(x._optinfo['info'], '???')
def test_fancy_printoptions(self):
# Test printing a masked array w/ fancy dtype.
fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
test = array([(1, (2, 3.0)), (4, (5, 6.0))],
mask=[(1, (0, 1)), (0, (1, 0))],
dtype=fancydtype)
control = "[(--, (2, --)) (4, (--, 6.0))]"
assert_equal(str(test), control)
# Test 0-d array with multi-dimensional dtype
t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]],
0.0),
mask = (False, [[True, False, True],
[False, False, True]],
False),
dtype = "int, (2,3)float, float")
control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)"
assert_equal(str(t_2d0), control)
def test_flatten_structured_array(self):
# Test flatten_structured_array on arrays
# On ndarray
ndtype = [('a', int), ('b', float)]
a = np.array([(1, 1), (2, 2)], dtype=ndtype)
test = flatten_structured_array(a)
control = np.array([[1., 1.], [2., 2.]], dtype=np.float)
assert_equal(test, control)
assert_equal(test.dtype, control.dtype)
# On masked_array
a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
test = flatten_structured_array(a)
control = array([[1., 1.], [2., 2.]],
mask=[[0, 1], [1, 0]], dtype=np.float)
assert_equal(test, control)
assert_equal(test.dtype, control.dtype)
assert_equal(test.mask, control.mask)
# On masked array with nested structure
ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])]
a = array([(1, (1, 1.1)), (2, (2, 2.2))],
mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype)
test = flatten_structured_array(a)
control = array([[1., 1., 1.1], [2., 2., 2.2]],
mask=[[0, 1, 0], [1, 0, 1]], dtype=np.float)
assert_equal(test, control)
assert_equal(test.dtype, control.dtype)
assert_equal(test.mask, control.mask)
# Keeping the initial shape
ndtype = [('a', int), ('b', float)]
a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype)
test = flatten_structured_array(a)
control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=np.float)
assert_equal(test, control)
assert_equal(test.dtype, control.dtype)
def test_void0d(self):
# Test creating a mvoid object
ndtype = [('a', int), ('b', int)]
a = np.array([(1, 2,)], dtype=ndtype)[0]
f = mvoid(a)
assert_(isinstance(f, mvoid))
a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0]
assert_(isinstance(a, mvoid))
a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
f = mvoid(a._data[0], a._mask[0])
assert_(isinstance(f, mvoid))
def test_mvoid_getitem(self):
# Test mvoid.__getitem__
ndtype = [('a', int), ('b', int)]
a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
dtype=ndtype)
# w/o mask
f = a[0]
self.assertTrue(isinstance(f, mvoid))
assert_equal((f[0], f['a']), (1, 1))
assert_equal(f['b'], 2)
# w/ mask
f = a[1]
self.assertTrue(isinstance(f, mvoid))
self.assertTrue(f[0] is masked)
self.assertTrue(f['a'] is masked)
assert_equal(f[1], 4)
# exotic dtype
A = masked_array(data=[([0,1],)],
mask=[([True, False],)],
dtype=[("A", ">i2", (2,))])
assert_equal(A[0]["A"], A["A"][0])
assert_equal(A[0]["A"], masked_array(data=[0, 1],
mask=[True, False], dtype=">i2"))
def test_mvoid_iter(self):
# Test iteration on __getitem__
ndtype = [('a', int), ('b', int)]
a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
dtype=ndtype)
# w/o mask
assert_equal(list(a[0]), [1, 2])
# w/ mask
assert_equal(list(a[1]), [masked, 4])
def test_mvoid_print(self):
# Test printing a mvoid
mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)])
assert_equal(str(mx[0]), "(1, 1)")
mx['b'][0] = masked
ini_display = masked_print_option._display
masked_print_option.set_display("-X-")
try:
assert_equal(str(mx[0]), "(1, -X-)")
assert_equal(repr(mx[0]), "(1, -X-)")
finally:
masked_print_option.set_display(ini_display)
# also check if there are object datatypes (see gh-7493)
mx = array([(1,), (2,)], dtype=[('a', 'O')])
assert_equal(str(mx[0]), "(1,)")
def test_mvoid_multidim_print(self):
# regression test for gh-6019
t_ma = masked_array(data = [([1, 2, 3],)],
mask = [([False, True, False],)],
fill_value = ([999999, 999999, 999999],),
dtype = [('a', '<i4', (3,))])
assert_(str(t_ma[0]) == "([1, --, 3],)")
assert_(repr(t_ma[0]) == "([1, --, 3],)")
# additional tests with structured arrays
t_2d = masked_array(data = [([[1, 2], [3,4]],)],
mask = [([[False, True], [True, False]],)],
dtype = [('a', '<i4', (2,2))])
assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)")
assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)")
t_0d = masked_array(data = [(1,2)],
mask = [(True,False)],
dtype = [('a', '<i4'), ('b', '<i4')])
assert_(str(t_0d[0]) == "(--, 2)")
assert_(repr(t_0d[0]) == "(--, 2)")
t_2d = masked_array(data = [([[1, 2], [3,4]], 1)],
mask = [([[False, True], [True, False]], False)],
dtype = [('a', '<i4', (2,2)), ('b', float)])
assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
t_ne = masked_array(data=[(1, (1, 1))],
mask=[(True, (True, False))],
dtype = [('a', '<i4'), ('b', 'i4,i4')])
assert_(str(t_ne[0]) == "(--, (--, 1))")
assert_(repr(t_ne[0]) == "(--, (--, 1))")
def test_object_with_array(self):
mx1 = masked_array([1.], mask=[True])
mx2 = masked_array([1., 2.])
mx = masked_array([mx1, mx2], mask=[False, True])
assert_(mx[0] is mx1)
assert_(mx[1] is not mx2)
assert_(np.all(mx[1].data == mx2.data))
assert_(np.all(mx[1].mask))
# check that we return a view.
mx[1].data[0] = 0.
assert_(mx2[0] == 0.)
class TestMaskedArrayArithmetic(TestCase):
# Base test class for MaskedArrays.
def setUp(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = np.array([-.5, 0., .5, .8])
zm = masked_array(z, mask=[0, 1, 0, 0])
xf = np.where(m1, 1e+20, x)
xm.set_fill_value(1e+20)
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def tearDown(self):
np.seterr(**self.err_status)
def test_basic_arithmetic(self):
# Test of basic arithmetic.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
a2d = array([[1, 2], [0, 4]])
a2dm = masked_array(a2d, [[0, 0], [1, 0]])
assert_equal(a2d * a2d, a2d * a2dm)
assert_equal(a2d + a2d, a2d + a2dm)
assert_equal(a2d - a2d, a2d - a2dm)
for s in [(12,), (4, 3), (2, 6)]:
x = x.reshape(s)
y = y.reshape(s)
xm = xm.reshape(s)
ym = ym.reshape(s)
xf = xf.reshape(s)
assert_equal(-x, -xm)
assert_equal(x + y, xm + ym)
assert_equal(x - y, xm - ym)
assert_equal(x * y, xm * ym)
assert_equal(x / y, xm / ym)
assert_equal(a10 + y, a10 + ym)
assert_equal(a10 - y, a10 - ym)
assert_equal(a10 * y, a10 * ym)
assert_equal(a10 / y, a10 / ym)
assert_equal(x + a10, xm + a10)
assert_equal(x - a10, xm - a10)
assert_equal(x * a10, xm * a10)
assert_equal(x / a10, xm / a10)
assert_equal(x ** 2, xm ** 2)
assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5)
assert_equal(x ** y, xm ** ym)
assert_equal(np.add(x, y), add(xm, ym))
assert_equal(np.subtract(x, y), subtract(xm, ym))
assert_equal(np.multiply(x, y), multiply(xm, ym))
assert_equal(np.divide(x, y), divide(xm, ym))
def test_divide_on_different_shapes(self):
x = arange(6, dtype=float)
x.shape = (2, 3)
y = arange(3, dtype=float)
z = x / y
assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
z = x / y[None,:]
assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
y = arange(2, dtype=float)
z = x / y[:, None]
assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]])
assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]])
def test_mixed_arithmetic(self):
# Tests mixed arithmetics.
na = np.array([1])
ma = array([1])
self.assertTrue(isinstance(na + ma, MaskedArray))
self.assertTrue(isinstance(ma + na, MaskedArray))
def test_limits_arithmetic(self):
tiny = np.finfo(float).tiny
a = array([tiny, 1. / tiny, 0.])
assert_equal(getmaskarray(a / 2), [0, 0, 0])
assert_equal(getmaskarray(2 / a), [1, 0, 1])
def test_masked_singleton_arithmetic(self):
# Tests some scalar arithmetics on MaskedArrays.
# Masked singleton should remain masked no matter what
xm = array(0, mask=1)
self.assertTrue((1 / array(0)).mask)
self.assertTrue((1 + xm).mask)
self.assertTrue((-xm).mask)
self.assertTrue(maximum(xm, xm).mask)
self.assertTrue(minimum(xm, xm).mask)
def test_masked_singleton_equality(self):
# Tests (in)equality on masked singleton
a = array([1, 2, 3], mask=[1, 1, 0])
assert_((a[0] == 0) is masked)
assert_((a[0] != 0) is masked)
assert_equal((a[-1] == 0), False)
assert_equal((a[-1] != 0), True)
def test_arithmetic_with_masked_singleton(self):
# Checks that there's no collapsing to masked
x = masked_array([1, 2])
y = x * masked
assert_equal(y.shape, x.shape)
assert_equal(y._mask, [True, True])
y = x[0] * masked
assert_(y is masked)
y = x + masked
assert_equal(y.shape, x.shape)
assert_equal(y._mask, [True, True])
def test_arithmetic_with_masked_singleton_on_1d_singleton(self):
# Check that we're not losing the shape of a singleton
x = masked_array([1, ])
y = x + masked
assert_equal(y.shape, x.shape)
assert_equal(y.mask, [True, ])
def test_scalar_arithmetic(self):
x = array(0, mask=0)
assert_equal(x.filled().ctypes.data, x.ctypes.data)
# Make sure we don't lose the shape in some circumstances
xm = array((0, 0)) / 0.
assert_equal(xm.shape, (2,))
assert_equal(xm.mask, [1, 1])
def test_basic_ufuncs(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(np.cos(x), cos(xm))
assert_equal(np.cosh(x), cosh(xm))
assert_equal(np.sin(x), sin(xm))
assert_equal(np.sinh(x), sinh(xm))
assert_equal(np.tan(x), tan(xm))
assert_equal(np.tanh(x), tanh(xm))
assert_equal(np.sqrt(abs(x)), sqrt(xm))
assert_equal(np.log(abs(x)), log(xm))
assert_equal(np.log10(abs(x)), log10(xm))
assert_equal(np.exp(x), exp(xm))
assert_equal(np.arcsin(z), arcsin(zm))
assert_equal(np.arccos(z), arccos(zm))
assert_equal(np.arctan(z), arctan(zm))
assert_equal(np.arctan2(x, y), arctan2(xm, ym))
assert_equal(np.absolute(x), absolute(xm))
assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
assert_equal(np.equal(x, y), equal(xm, ym))
assert_equal(np.not_equal(x, y), not_equal(xm, ym))
assert_equal(np.less(x, y), less(xm, ym))
assert_equal(np.greater(x, y), greater(xm, ym))
assert_equal(np.less_equal(x, y), less_equal(xm, ym))
assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
assert_equal(np.conjugate(x), conjugate(xm))
def test_count_func(self):
# Tests count
assert_equal(1, count(1))
assert_equal(0, array(1, mask=[1]))
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
res = count(ott)
self.assertTrue(res.dtype.type is np.intp)
assert_equal(3, res)
ott = ott.reshape((2, 2))
res = count(ott)
assert_(res.dtype.type is np.intp)
assert_equal(3, res)
res = count(ott, 0)
assert_(isinstance(res, ndarray))
assert_equal([1, 2], res)
assert_(getmask(res) is nomask)
ott = array([0., 1., 2., 3.])
res = count(ott, 0)
assert_(isinstance(res, ndarray))
assert_(res.dtype.type is np.intp)
assert_raises(ValueError, ott.count, axis=1)
def test_count_on_python_builtins(self):
# Tests count works on python builtins (issue#8019)
assert_equal(3, count([1,2,3]))
assert_equal(2, count((1,2)))
def test_minmax_func(self):
# Tests minimum and maximum.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
# max doesn't work if shaped
xr = np.ravel(x)
xmr = ravel(xm)
# following are true because of careful selection of data
assert_equal(max(xr), maximum(xmr))
assert_equal(min(xr), minimum(xmr))
assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
x = arange(5)
y = arange(5) - 2
x[3] = masked
y[0] = masked
assert_equal(minimum(x, y), where(less(x, y), x, y))
assert_equal(maximum(x, y), where(greater(x, y), x, y))
assert_(minimum(x) == 0)
assert_(maximum(x) == 4)
x = arange(4).reshape(2, 2)
x[-1, -1] = masked
assert_equal(maximum(x), 2)
def test_minimummaximum_func(self):
a = np.ones((2, 2))
aminimum = minimum(a, a)
self.assertTrue(isinstance(aminimum, MaskedArray))
assert_equal(aminimum, np.minimum(a, a))
aminimum = minimum.outer(a, a)
self.assertTrue(isinstance(aminimum, MaskedArray))
assert_equal(aminimum, np.minimum.outer(a, a))
amaximum = maximum(a, a)
self.assertTrue(isinstance(amaximum, MaskedArray))
assert_equal(amaximum, np.maximum(a, a))
amaximum = maximum.outer(a, a)
self.assertTrue(isinstance(amaximum, MaskedArray))
assert_equal(amaximum, np.maximum.outer(a, a))
def test_minmax_reduce(self):
# Test np.min/maximum.reduce on array w/ full False mask
a = array([1, 2, 3], mask=[False, False, False])
b = np.maximum.reduce(a)
assert_equal(b, 3)
def test_minmax_funcs_with_output(self):
# Tests the min/max functions with explicit outputs
mask = np.random.rand(12).round()
xm = array(np.random.uniform(0, 10, 12), mask=mask)
xm.shape = (3, 4)
for funcname in ('min', 'max'):
# Initialize
npfunc = getattr(np, funcname)
mafunc = getattr(numpy.ma.core, funcname)
# Use the np version
nout = np.empty((4,), dtype=int)
try:
result = npfunc(xm, axis=0, out=nout)
except MaskError:
pass
nout = np.empty((4,), dtype=float)
result = npfunc(xm, axis=0, out=nout)
self.assertTrue(result is nout)
# Use the ma version
nout.fill(-999)
result = mafunc(xm, axis=0, out=nout)
self.assertTrue(result is nout)
def test_minmax_methods(self):
# Additional tests on max/min
(_, _, _, _, _, xm, _, _, _, _) = self.d
xm.shape = (xm.size,)
assert_equal(xm.max(), 10)
self.assertTrue(xm[0].max() is masked)
self.assertTrue(xm[0].max(0) is masked)
self.assertTrue(xm[0].max(-1) is masked)
assert_equal(xm.min(), -10.)
self.assertTrue(xm[0].min() is masked)
self.assertTrue(xm[0].min(0) is masked)
self.assertTrue(xm[0].min(-1) is masked)
assert_equal(xm.ptp(), 20.)
self.assertTrue(xm[0].ptp() is masked)
self.assertTrue(xm[0].ptp(0) is masked)
self.assertTrue(xm[0].ptp(-1) is masked)
x = array([1, 2, 3], mask=True)
self.assertTrue(x.min() is masked)
self.assertTrue(x.max() is masked)
self.assertTrue(x.ptp() is masked)
def test_addsumprod(self):
# Tests add, sum, product.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(np.add.reduce(x), add.reduce(x))
assert_equal(np.add.accumulate(x), add.accumulate(x))
assert_equal(4, sum(array(4), axis=0))
assert_equal(4, sum(array(4), axis=0))
assert_equal(np.sum(x, axis=0), sum(x, axis=0))
assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
assert_equal(np.sum(x, 0), sum(x, 0))
assert_equal(np.product(x, axis=0), product(x, axis=0))
assert_equal(np.product(x, 0), product(x, 0))
assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
s = (3, 4)
x.shape = y.shape = xm.shape = ym.shape = s
if len(s) > 1:
assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
assert_equal(np.sum(x, 1), sum(x, 1))
assert_equal(np.product(x, 1), product(x, 1))
def test_binops_d2D(self):
# Test binary operations on 2D data
a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
b = array([[2., 3.], [4., 5.], [6., 7.]])
test = a * b
control = array([[2., 3.], [2., 2.], [3., 3.]],
mask=[[0, 0], [1, 1], [1, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
test = b * a
control = array([[2., 3.], [4., 5.], [6., 7.]],
mask=[[0, 0], [1, 1], [1, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
a = array([[1.], [2.], [3.]])
b = array([[2., 3.], [4., 5.], [6., 7.]],
mask=[[0, 0], [0, 0], [0, 1]])
test = a * b
control = array([[2, 3], [8, 10], [18, 3]],
mask=[[0, 0], [0, 0], [0, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
test = b * a
control = array([[2, 3], [8, 10], [18, 7]],
mask=[[0, 0], [0, 0], [0, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
def test_domained_binops_d2D(self):
# Test domained binary operations on 2D data
a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
b = array([[2., 3.], [4., 5.], [6., 7.]])
test = a / b
control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]],
mask=[[0, 0], [1, 1], [1, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
test = b / a
control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]],
mask=[[0, 0], [1, 1], [1, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
a = array([[1.], [2.], [3.]])
b = array([[2., 3.], [4., 5.], [6., 7.]],
mask=[[0, 0], [0, 0], [0, 1]])
test = a / b
control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]],
mask=[[0, 0], [0, 0], [0, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
test = b / a
control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]],
mask=[[0, 0], [0, 0], [0, 1]])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
def test_noshrinking(self):
# Check that we don't shrink a mask when not wanted
# Binary operations
a = masked_array([1., 2., 3.], mask=[False, False, False],
shrink=False)
b = a + 1
assert_equal(b.mask, [0, 0, 0])
# In place binary operation
a += 1
assert_equal(a.mask, [0, 0, 0])
# Domained binary operation
b = a / 1.
assert_equal(b.mask, [0, 0, 0])
# In place binary operation
a /= 1.
assert_equal(a.mask, [0, 0, 0])
def test_ufunc_nomask(self):
# check the case ufuncs should set the mask to false
m = np.ma.array([1])
# check we don't get array([False], dtype=bool)
assert_equal(np.true_divide(m, 5).mask.shape, ())
def test_noshink_on_creation(self):
# Check that the mask is not shrunk on array creation when not wanted
a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False)
assert_equal(a.mask, [0, 0, 0])
def test_mod(self):
# Tests mod
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
assert_equal(mod(x, y), mod(xm, ym))
test = mod(ym, xm)
assert_equal(test, np.mod(ym, xm))
assert_equal(test.mask, mask_or(xm.mask, ym.mask))
test = mod(xm, ym)
assert_equal(test, np.mod(xm, ym))
assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0)))
def test_TakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x[5:6] = masked
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
assert_equal(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y))
assert_equal(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y))
y = array(['abc', 1, 'def', 2, 3], object)
y[2] = masked
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3)
def test_imag_real(self):
# Check complex
xx = array([1 + 10j, 20 + 2j], mask=[1, 0])
assert_equal(xx.imag, [10, 2])
assert_equal(xx.imag.filled(), [1e+20, 2])
assert_equal(xx.imag.dtype, xx._data.imag.dtype)
assert_equal(xx.real, [1, 20])
assert_equal(xx.real.filled(), [1e+20, 20])
assert_equal(xx.real.dtype, xx._data.real.dtype)
def test_methods_with_output(self):
xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
xm[:, 0] = xm[0] = xm[-1, -1] = masked
funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',)
for funcname in funclist:
npfunc = getattr(np, funcname)
xmmeth = getattr(xm, funcname)
# A ndarray as explicit input
output = np.empty(4, dtype=float)
output.fill(-9999)
result = npfunc(xm, axis=0, out=output)
# ... the result should be the given output
assert_(result is output)
assert_equal(result, xmmeth(axis=0, out=output))
output = empty(4, dtype=int)
result = xmmeth(axis=0, out=output)
assert_(result is output)
assert_(output[0] is masked)
def test_count_mean_with_matrix(self):
m = np.ma.array(np.matrix([[1,2],[3,4]]), mask=np.zeros((2,2)))
assert_equal(m.count(axis=0).shape, (1,2))
assert_equal(m.count(axis=1).shape, (2,1))
#make sure broadcasting inside mean and var work
assert_equal(m.mean(axis=0), [[2., 3.]])
assert_equal(m.mean(axis=1), [[1.5], [3.5]])
def test_eq_on_structured(self):
# Test the equality of structured arrays
ndtype = [('A', int), ('B', int)]
a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
test = (a == a)
assert_equal(test, [True, True])
assert_equal(test.mask, [False, False])
b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
test = (a == b)
assert_equal(test, [False, True])
assert_equal(test.mask, [True, False])
b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
test = (a == b)
assert_equal(test, [True, False])
assert_equal(test.mask, [False, False])
def test_ne_on_structured(self):
# Test the equality of structured arrays
ndtype = [('A', int), ('B', int)]
a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
test = (a != a)
assert_equal(test, [False, False])
assert_equal(test.mask, [False, False])
b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
test = (a != b)
assert_equal(test, [True, False])
assert_equal(test.mask, [True, False])
b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
test = (a != b)
assert_equal(test, [False, True])
assert_equal(test.mask, [False, False])
def test_eq_with_None(self):
# Really, comparisons with None should not be done, but check them
# anyway. Note that pep8 will flag these tests.
# Deprecation is in place for arrays, and when it happens this
# test will fail (and have to be changed accordingly).
# With partial mask
with suppress_warnings() as sup:
sup.filter(FutureWarning, "Comparison to `None`")
a = array([1, 2], mask=[0, 1])
assert_equal(a == None, False)
assert_equal(a.data == None, False)
assert_equal(a.mask == None, False)
assert_equal(a != None, True)
# With nomask
a = array([1, 2], mask=False)
assert_equal(a == None, False)
assert_equal(a != None, True)
# With complete mask
a = array([1, 2], mask=True)
assert_equal(a == None, False)
assert_equal(a != None, True)
# Fully masked, even comparison to None should return "masked"
a = masked
assert_equal(a == None, masked)
def test_eq_with_scalar(self):
a = array(1)
assert_equal(a == 1, True)
assert_equal(a == 0, False)
assert_equal(a != 1, False)
assert_equal(a != 0, True)
def test_numpyarithmetics(self):
# Check that the mask is not back-propagated when using numpy functions
a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
control = masked_array([np.nan, np.nan, 0, np.log(2), -1],
mask=[1, 1, 0, 0, 1])
test = log(a)
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(a.mask, [0, 0, 0, 0, 1])
test = np.log(a)
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(a.mask, [0, 0, 0, 0, 1])
class TestMaskedArrayAttributes(TestCase):
def test_keepmask(self):
# Tests the keep mask flag
x = masked_array([1, 2, 3], mask=[1, 0, 0])
mx = masked_array(x)
assert_equal(mx.mask, x.mask)
mx = masked_array(x, mask=[0, 1, 0], keep_mask=False)
assert_equal(mx.mask, [0, 1, 0])
mx = masked_array(x, mask=[0, 1, 0], keep_mask=True)
assert_equal(mx.mask, [1, 1, 0])
# We default to true
mx = masked_array(x, mask=[0, 1, 0])
assert_equal(mx.mask, [1, 1, 0])
def test_hardmask(self):
# Test hard_mask
d = arange(5)
n = [0, 0, 0, 1, 1]
m = make_mask(n)
xh = array(d, mask=m, hard_mask=True)
# We need to copy, to avoid updating d in xh !
xs = array(d, mask=m, hard_mask=False, copy=True)
xh[[1, 4]] = [10, 40]
xs[[1, 4]] = [10, 40]
assert_equal(xh._data, [0, 10, 2, 3, 4])
assert_equal(xs._data, [0, 10, 2, 3, 40])
assert_equal(xs.mask, [0, 0, 0, 1, 0])
self.assertTrue(xh._hardmask)
self.assertTrue(not xs._hardmask)
xh[1:4] = [10, 20, 30]
xs[1:4] = [10, 20, 30]
assert_equal(xh._data, [0, 10, 20, 3, 4])
assert_equal(xs._data, [0, 10, 20, 30, 40])
assert_equal(xs.mask, nomask)
xh[0] = masked
xs[0] = masked
assert_equal(xh.mask, [1, 0, 0, 1, 1])
assert_equal(xs.mask, [1, 0, 0, 0, 0])
xh[:] = 1
xs[:] = 1
assert_equal(xh._data, [0, 1, 1, 3, 4])
assert_equal(xs._data, [1, 1, 1, 1, 1])
assert_equal(xh.mask, [1, 0, 0, 1, 1])
assert_equal(xs.mask, nomask)
# Switch to soft mask
xh.soften_mask()
xh[:] = arange(5)
assert_equal(xh._data, [0, 1, 2, 3, 4])
assert_equal(xh.mask, nomask)
# Switch back to hard mask
xh.harden_mask()
xh[xh < 3] = masked
assert_equal(xh._data, [0, 1, 2, 3, 4])
assert_equal(xh._mask, [1, 1, 1, 0, 0])
xh[filled(xh > 1, False)] = 5
assert_equal(xh._data, [0, 1, 2, 5, 5])
assert_equal(xh._mask, [1, 1, 1, 0, 0])
xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True)
xh[0] = 0
assert_equal(xh._data, [[1, 0], [3, 4]])
assert_equal(xh._mask, [[1, 0], [0, 0]])
xh[-1, -1] = 5
assert_equal(xh._data, [[1, 0], [3, 5]])
assert_equal(xh._mask, [[1, 0], [0, 0]])
xh[filled(xh < 5, False)] = 2
assert_equal(xh._data, [[1, 2], [2, 5]])
assert_equal(xh._mask, [[1, 0], [0, 0]])
def test_hardmask_again(self):
# Another test of hardmask
d = arange(5)
n = [0, 0, 0, 1, 1]
m = make_mask(n)
xh = array(d, mask=m, hard_mask=True)
xh[4:5] = 999
xh[0:1] = 999
assert_equal(xh._data, [999, 1, 2, 3, 4])
def test_hardmask_oncemore_yay(self):
# OK, yet another test of hardmask
# Make sure that harden_mask/soften_mask//unshare_mask returns self
a = array([1, 2, 3], mask=[1, 0, 0])
b = a.harden_mask()
assert_equal(a, b)
b[0] = 0
assert_equal(a, b)
assert_equal(b, array([1, 2, 3], mask=[1, 0, 0]))
a = b.soften_mask()
a[0] = 0
assert_equal(a, b)
assert_equal(b, array([0, 2, 3], mask=[0, 0, 0]))
def test_smallmask(self):
# Checks the behaviour of _smallmask
a = arange(10)
a[1] = masked
a[1] = 1
assert_equal(a._mask, nomask)
a = arange(10)
a._smallmask = False
a[1] = masked
a[1] = 1
assert_equal(a._mask, zeros(10))
def test_shrink_mask(self):
# Tests .shrink_mask()
a = array([1, 2, 3], mask=[0, 0, 0])
b = a.shrink_mask()
assert_equal(a, b)
assert_equal(a.mask, nomask)
def test_flat(self):
# Test that flat can return all types of items [#4585, #4615]
# test simple access
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
assert_equal(test.flat[1], 2)
assert_equal(test.flat[2], masked)
self.assertTrue(np.all(test.flat[0:2] == test[0, 0:2]))
# Test flat on masked_matrices
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
assert_equal(test, control)
# Test setting
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
testflat = test.flat
testflat[:] = testflat[[2, 1, 0]]
assert_equal(test, control)
testflat[0] = 9
assert_equal(test[0, 0], 9)
# test 2-D record array
# ... on structured array w/ masked records
x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')],
[(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]],
dtype=[('a', int), ('b', float), ('c', '|S8')])
x['a'][0, 1] = masked
x['b'][1, 0] = masked
x['c'][0, 2] = masked
x[-1, -1] = masked
xflat = x.flat
assert_equal(xflat[0], x[0, 0])
assert_equal(xflat[1], x[0, 1])
assert_equal(xflat[2], x[0, 2])
assert_equal(xflat[:3], x[0])
assert_equal(xflat[3], x[1, 0])
assert_equal(xflat[4], x[1, 1])
assert_equal(xflat[5], x[1, 2])
assert_equal(xflat[3:], x[1])
assert_equal(xflat[-1], x[-1, -1])
i = 0
j = 0
for xf in xflat:
assert_equal(xf, x[j, i])
i += 1
if i >= x.shape[-1]:
i = 0
j += 1
# test that matrices keep the correct shape (#4615)
a = masked_array(np.matrix(np.eye(2)), mask=0)
b = a.flat
b01 = b[:2]
assert_equal(b01.data, array([[1., 0.]]))
assert_equal(b01.mask, array([[False, False]]))
def test_assign_dtype(self):
# check that the mask's dtype is updated when dtype is changed
a = np.zeros(4, dtype='f4,i4')
m = np.ma.array(a)
m.dtype = np.dtype('f4')
repr(m) # raises?
assert_equal(m.dtype, np.dtype('f4'))
# check that dtype changes that change shape of mask too much
# are not allowed
def assign():
m = np.ma.array(a)
m.dtype = np.dtype('f8')
assert_raises(ValueError, assign)
b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises?
assert_equal(b.dtype, np.dtype('f4'))
# check that nomask is preserved
a = np.zeros(4, dtype='f4')
m = np.ma.array(a)
m.dtype = np.dtype('f4,i4')
assert_equal(m.dtype, np.dtype('f4,i4'))
assert_equal(m._mask, np.ma.nomask)
class TestFillingValues(TestCase):
def test_check_on_scalar(self):
# Test _check_fill_value set to valid and invalid values
_check_fill_value = np.ma.core._check_fill_value
fval = _check_fill_value(0, int)
assert_equal(fval, 0)
fval = _check_fill_value(None, int)
assert_equal(fval, default_fill_value(0))
fval = _check_fill_value(0, "|S3")
assert_equal(fval, asbytes("0"))
fval = _check_fill_value(None, "|S3")
assert_equal(fval, default_fill_value(b"camelot!"))
self.assertRaises(TypeError, _check_fill_value, 1e+20, int)
self.assertRaises(TypeError, _check_fill_value, 'stuff', int)
def test_check_on_fields(self):
# Tests _check_fill_value with records
_check_fill_value = np.ma.core._check_fill_value
ndtype = [('a', int), ('b', float), ('c', "|S3")]
# A check on a list should return a single record
fval = _check_fill_value([-999, -12345678.9, "???"], ndtype)
self.assertTrue(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")])
# A check on None should output the defaults
fval = _check_fill_value(None, ndtype)
self.assertTrue(isinstance(fval, ndarray))
assert_equal(fval.item(), [default_fill_value(0),
default_fill_value(0.),
asbytes(default_fill_value("0"))])
#.....Using a structured type as fill_value should work
fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype)
fval = _check_fill_value(fill_val, ndtype)
self.assertTrue(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")])
#.....Using a flexible type w/ a different type shouldn't matter
# BEHAVIOR in 1.5 and earlier: match structured types by position
#fill_val = np.array((-999, -12345678.9, "???"),
# dtype=[("A", int), ("B", float), ("C", "|S3")])
# BEHAVIOR in 1.6 and later: match structured types by name
fill_val = np.array(("???", -999, -12345678.9),
dtype=[("c", "|S3"), ("a", int), ("b", float), ])
# suppress deprecation warning in 1.12 (remove in 1.13)
with assert_warns(FutureWarning):
fval = _check_fill_value(fill_val, ndtype)
self.assertTrue(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")])
#.....Using an object-array shouldn't matter either
fill_val = np.ndarray(shape=(1,), dtype=object)
fill_val[0] = (-999, -12345678.9, asbytes("???"))
fval = _check_fill_value(fill_val, object)
self.assertTrue(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")])
# NOTE: This test was never run properly as "fill_value" rather than
# "fill_val" was assigned. Written properly, it fails.
#fill_val = np.array((-999, -12345678.9, "???"))
#fval = _check_fill_value(fill_val, ndtype)
#self.assertTrue(isinstance(fval, ndarray))
#assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")])
#.....One-field-only flexible type should work as well
ndtype = [("a", int)]
fval = _check_fill_value(-999999999, ndtype)
self.assertTrue(isinstance(fval, ndarray))
assert_equal(fval.item(), (-999999999,))
def test_fillvalue_conversion(self):
# Tests the behavior of fill_value during conversion
# We had a tailored comment to make sure special attributes are
# properly dealt with
a = array(asbytes_nested(['3', '4', '5']))
a._optinfo.update({'comment':"updated!"})
b = array(a, dtype=int)
assert_equal(b._data, [3, 4, 5])
assert_equal(b.fill_value, default_fill_value(0))
b = array(a, dtype=float)
assert_equal(b._data, [3, 4, 5])
assert_equal(b.fill_value, default_fill_value(0.))
b = a.astype(int)
assert_equal(b._data, [3, 4, 5])
assert_equal(b.fill_value, default_fill_value(0))
assert_equal(b._optinfo['comment'], "updated!")
b = a.astype([('a', '|S3')])
assert_equal(b['a']._data, a._data)
assert_equal(b['a'].fill_value, a.fill_value)
def test_fillvalue(self):
# Yet more fun with the fill_value
data = masked_array([1, 2, 3], fill_value=-999)
series = data[[0, 2, 1]]
assert_equal(series._fill_value, data._fill_value)
mtype = [('f', float), ('s', '|S3')]
x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype)
x.fill_value = 999
assert_equal(x.fill_value.item(), [999., asbytes('999')])
assert_equal(x['f'].fill_value, 999)
assert_equal(x['s'].fill_value, asbytes('999'))
x.fill_value = (9, '???')
assert_equal(x.fill_value.item(), (9, asbytes('???')))
assert_equal(x['f'].fill_value, 9)
assert_equal(x['s'].fill_value, asbytes('???'))
x = array([1, 2, 3.1])
x.fill_value = 999
assert_equal(np.asarray(x.fill_value).dtype, float)
assert_equal(x.fill_value, 999.)
assert_equal(x._fill_value, np.array(999.))
def test_fillvalue_exotic_dtype(self):
# Tests yet more exotic flexible dtypes
_check_fill_value = np.ma.core._check_fill_value
ndtype = [('i', int), ('s', '|S8'), ('f', float)]
control = np.array((default_fill_value(0),
default_fill_value('0'),
default_fill_value(0.),),
dtype=ndtype)
assert_equal(_check_fill_value(None, ndtype), control)
# The shape shouldn't matter
ndtype = [('f0', float, (2, 2))]
control = np.array((default_fill_value(0.),),
dtype=[('f0', float)]).astype(ndtype)
assert_equal(_check_fill_value(None, ndtype), control)
control = np.array((0,), dtype=[('f0', float)]).astype(ndtype)
assert_equal(_check_fill_value(0, ndtype), control)
ndtype = np.dtype("int, (2,3)float, float")
control = np.array((default_fill_value(0),
default_fill_value(0.),
default_fill_value(0.),),
dtype="int, float, float").astype(ndtype)
test = _check_fill_value(None, ndtype)
assert_equal(test, control)
control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype)
assert_equal(_check_fill_value(0, ndtype), control)
# but when indexing, fill value should become scalar not tuple
# See issue #6723
M = masked_array(control)
assert_equal(M["f1"].fill_value.ndim, 0)
def test_fillvalue_datetime_timedelta(self):
# Test default fillvalue for datetime64 and timedelta64 types.
# See issue #4476, this would return '?' which would cause errors
# elsewhere
for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m",
"h", "D", "W", "M", "Y"):
control = numpy.datetime64("NaT", timecode)
test = default_fill_value(numpy.dtype("<M8[" + timecode + "]"))
assert_equal(test, control)
control = numpy.timedelta64("NaT", timecode)
test = default_fill_value(numpy.dtype("<m8[" + timecode + "]"))
assert_equal(test, control)
def test_extremum_fill_value(self):
# Tests extremum fill values for flexible type.
a = array([(1, (2, 3)), (4, (5, 6))],
dtype=[('A', int), ('B', [('BA', int), ('BB', int)])])
test = a.fill_value
assert_equal(test['A'], default_fill_value(a['A']))
assert_equal(test['B']['BA'], default_fill_value(a['B']['BA']))
assert_equal(test['B']['BB'], default_fill_value(a['B']['BB']))
test = minimum_fill_value(a)
assert_equal(test[0], minimum_fill_value(a['A']))
assert_equal(test[1][0], minimum_fill_value(a['B']['BA']))
assert_equal(test[1][1], minimum_fill_value(a['B']['BB']))
assert_equal(test[1], minimum_fill_value(a['B']))
test = maximum_fill_value(a)
assert_equal(test[0], maximum_fill_value(a['A']))
assert_equal(test[1][0], maximum_fill_value(a['B']['BA']))
assert_equal(test[1][1], maximum_fill_value(a['B']['BB']))
assert_equal(test[1], maximum_fill_value(a['B']))
def test_fillvalue_individual_fields(self):
# Test setting fill_value on individual fields
ndtype = [('a', int), ('b', int)]
# Explicit fill_value
a = array(list(zip([1, 2, 3], [4, 5, 6])),
fill_value=(-999, -999), dtype=ndtype)
aa = a['a']
aa.set_fill_value(10)
assert_equal(aa._fill_value, np.array(10))
assert_equal(tuple(a.fill_value), (10, -999))
a.fill_value['b'] = -10
assert_equal(tuple(a.fill_value), (10, -10))
# Implicit fill_value
t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype)
tt = t['a']
tt.set_fill_value(10)
assert_equal(tt._fill_value, np.array(10))
assert_equal(tuple(t.fill_value), (10, default_fill_value(0)))
def test_fillvalue_implicit_structured_array(self):
# Check that fill_value is always defined for structured arrays
ndtype = ('b', float)
adtype = ('a', float)
a = array([(1.,), (2.,)], mask=[(False,), (False,)],
fill_value=(np.nan,), dtype=np.dtype([adtype]))
b = empty(a.shape, dtype=[adtype, ndtype])
b['a'] = a['a']
b['a'].set_fill_value(a['a'].fill_value)
f = b._fill_value[()]
assert_(np.isnan(f[0]))
assert_equal(f[-1], default_fill_value(1.))
def test_fillvalue_as_arguments(self):
# Test adding a fill_value parameter to empty/ones/zeros
a = empty(3, fill_value=999.)
assert_equal(a.fill_value, 999.)
a = ones(3, fill_value=999., dtype=float)
assert_equal(a.fill_value, 999.)
a = zeros(3, fill_value=0., dtype=complex)
assert_equal(a.fill_value, 0.)
a = identity(3, fill_value=0., dtype=complex)
assert_equal(a.fill_value, 0.)
def test_shape_argument(self):
# Test that shape can be provides as an argument
# GH issue 6106
a = empty(shape=(3, ))
assert_equal(a.shape, (3, ))
a = ones(shape=(3, ), dtype=float)
assert_equal(a.shape, (3, ))
a = zeros(shape=(3, ), dtype=complex)
assert_equal(a.shape, (3, ))
def test_fillvalue_in_view(self):
# Test the behavior of fill_value in view
# Create initial masked array
x = array([1, 2, 3], fill_value=1, dtype=np.int64)
# Check that fill_value is preserved by default
y = x.view()
assert_(y.fill_value == 1)
# Check that fill_value is preserved if dtype is specified and the
# dtype is an ndarray sub-class and has a _fill_value attribute
y = x.view(MaskedArray)
assert_(y.fill_value == 1)
# Check that fill_value is preserved if type is specified and the
# dtype is an ndarray sub-class and has a _fill_value attribute (by
# default, the first argument is dtype, not type)
y = x.view(type=MaskedArray)
assert_(y.fill_value == 1)
# Check that code does not crash if passed an ndarray sub-class that
# does not have a _fill_value attribute
y = x.view(np.ndarray)
y = x.view(type=np.ndarray)
# Check that fill_value can be overridden with view
y = x.view(MaskedArray, fill_value=2)
assert_(y.fill_value == 2)
# Check that fill_value can be overridden with view (using type=)
y = x.view(type=MaskedArray, fill_value=2)
assert_(y.fill_value == 2)
# Check that fill_value gets reset if passed a dtype but not a
# fill_value. This is because even though in some cases one can safely
# cast the fill_value, e.g. if taking an int64 view of an int32 array,
# in other cases, this cannot be done (e.g. int32 view of an int64
# array with a large fill_value).
y = x.view(dtype=np.int32)
assert_(y.fill_value == 999999)
def test_fillvalue_bytes_or_str(self):
# Test whether fill values work as expected for structured dtypes
# containing bytes or str. See issue #7259.
a = empty(shape=(3, ), dtype="(2)3S,(2)3U")
assert_equal(a["f0"].fill_value, default_fill_value(b"spam"))
assert_equal(a["f1"].fill_value, default_fill_value("eggs"))
class TestUfuncs(TestCase):
# Test class for the application of ufuncs on MaskedArrays.
def setUp(self):
# Base data definition.
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
def tearDown(self):
np.seterr(**self.err_status)
def test_testUfuncRegression(self):
# Tests new ufuncs on MaskedArrays.
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
'sin', 'cos', 'tan',
'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh',
'arcsinh',
'arccosh',
'arctanh',
'absolute', 'fabs', 'negative',
'floor', 'ceil',
'logical_not',
'add', 'subtract', 'multiply',
'divide', 'true_divide', 'floor_divide',
'remainder', 'fmod', 'hypot', 'arctan2',
'equal', 'not_equal', 'less_equal', 'greater_equal',
'less', 'greater',
'logical_and', 'logical_or', 'logical_xor',
]:
try:
uf = getattr(umath, f)
except AttributeError:
uf = getattr(fromnumeric, f)
mf = getattr(numpy.ma.core, f)
args = self.d[:uf.nin]
ur = uf(*args)
mr = mf(*args)
assert_equal(ur.filled(0), mr.filled(0), f)
assert_mask_equal(ur.mask, mr.mask, err_msg=f)
def test_reduce(self):
# Tests reduce on MaskedArrays.
a = self.d[0]
self.assertTrue(not alltrue(a, axis=0))
self.assertTrue(sometrue(a, axis=0))
assert_equal(sum(a[:3], axis=0), 0)
assert_equal(product(a, axis=0), 0)
assert_equal(add.reduce(a), pi)
def test_minmax(self):
# Tests extrema on MaskedArrays.
a = arange(1, 13).reshape(3, 4)
amask = masked_where(a < 5, a)
assert_equal(amask.max(), a.max())
assert_equal(amask.min(), 5)
assert_equal(amask.max(0), a.max(0))
assert_equal(amask.min(0), [5, 6, 7, 8])
self.assertTrue(amask.max(1)[0].mask)
self.assertTrue(amask.min(1)[0].mask)
def test_ndarray_mask(self):
# Check that the mask of the result is a ndarray (not a MaskedArray...)
a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
test = np.sqrt(a)
control = masked_array([-1, 0, 1, np.sqrt(2), -1],
mask=[1, 0, 0, 0, 1])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
self.assertTrue(not isinstance(test.mask, MaskedArray))
def test_treatment_of_NotImplemented(self):
# Check that NotImplemented is returned at appropriate places
a = masked_array([1., 2.], mask=[1, 0])
self.assertRaises(TypeError, operator.mul, a, "abc")
self.assertRaises(TypeError, operator.truediv, a, "abc")
class MyClass(object):
__array_priority__ = a.__array_priority__ + 1
def __mul__(self, other):
return "My mul"
def __rmul__(self, other):
return "My rmul"
me = MyClass()
assert_(me * a == "My mul")
assert_(a * me == "My rmul")
# and that __array_priority__ is respected
class MyClass2(object):
__array_priority__ = 100
def __mul__(self, other):
return "Me2mul"
def __rmul__(self, other):
return "Me2rmul"
def __rdiv__(self, other):
return "Me2rdiv"
__rtruediv__ = __rdiv__
me_too = MyClass2()
assert_(a.__mul__(me_too) is NotImplemented)
assert_(all(multiply.outer(a, me_too) == "Me2rmul"))
assert_(a.__truediv__(me_too) is NotImplemented)
assert_(me_too * a == "Me2mul")
assert_(a * me_too == "Me2rmul")
assert_(a / me_too == "Me2rdiv")
def test_no_masked_nan_warnings(self):
# check that a nan in masked position does not
# cause ufunc warnings
m = np.ma.array([0.5, np.nan], mask=[0,1])
with warnings.catch_warnings():
warnings.filterwarnings("error")
# test unary and binary ufuncs
exp(m)
add(m, 1)
m > 0
# test different unary domains
sqrt(m)
log(m)
tan(m)
arcsin(m)
arccos(m)
arccosh(m)
# test binary domains
divide(m, 2)
# also check that allclose uses ma ufuncs, to avoid warning
allclose(m, 0.5)
class TestMaskedArrayInPlaceArithmetics(TestCase):
# Test MaskedArray Arithmetics
def setUp(self):
x = arange(10)
y = arange(10)
xm = arange(10)
xm[2] = masked
self.intdata = (x, y, xm)
self.floatdata = (x.astype(float), y.astype(float), xm.astype(float))
self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
self.othertypes = [np.dtype(_).type for _ in self.othertypes]
self.uint8data = (
x.astype(np.uint8),
y.astype(np.uint8),
xm.astype(np.uint8)
)
def test_inplace_addition_scalar(self):
# Test of inplace additions
(x, y, xm) = self.intdata
xm[2] = masked
x += 1
assert_equal(x, y + 1)
xm += 1
assert_equal(xm, y + 1)
(x, _, xm) = self.floatdata
id1 = x.data.ctypes._data
x += 1.
assert_(id1 == x.data.ctypes._data)
assert_equal(x, y + 1.)
def test_inplace_addition_array(self):
# Test of inplace additions
(x, y, xm) = self.intdata
m = xm.mask
a = arange(10, dtype=np.int16)
a[-1] = masked
x += a
xm += a
assert_equal(x, y + a)
assert_equal(xm, y + a)
assert_equal(xm.mask, mask_or(m, a.mask))
def test_inplace_subtraction_scalar(self):
# Test of inplace subtractions
(x, y, xm) = self.intdata
x -= 1
assert_equal(x, y - 1)
xm -= 1
assert_equal(xm, y - 1)
def test_inplace_subtraction_array(self):
# Test of inplace subtractions
(x, y, xm) = self.floatdata
m = xm.mask
a = arange(10, dtype=float)
a[-1] = masked
x -= a
xm -= a
assert_equal(x, y - a)
assert_equal(xm, y - a)
assert_equal(xm.mask, mask_or(m, a.mask))
def test_inplace_multiplication_scalar(self):
# Test of inplace multiplication
(x, y, xm) = self.floatdata
x *= 2.0
assert_equal(x, y * 2)
xm *= 2.0
assert_equal(xm, y * 2)
def test_inplace_multiplication_array(self):
# Test of inplace multiplication
(x, y, xm) = self.floatdata
m = xm.mask
a = arange(10, dtype=float)
a[-1] = masked
x *= a
xm *= a
assert_equal(x, y * a)
assert_equal(xm, y * a)
assert_equal(xm.mask, mask_or(m, a.mask))
def test_inplace_division_scalar_int(self):
# Test of inplace division
(x, y, xm) = self.intdata
x = arange(10) * 2
xm = arange(10) * 2
xm[2] = masked
x //= 2
assert_equal(x, y)
xm //= 2
assert_equal(xm, y)
def test_inplace_division_scalar_float(self):
# Test of inplace division
(x, y, xm) = self.floatdata
x /= 2.0
assert_equal(x, y / 2.0)
xm /= arange(10)
assert_equal(xm, ones((10,)))
def test_inplace_division_array_float(self):
# Test of inplace division
(x, y, xm) = self.floatdata
m = xm.mask
a = arange(10, dtype=float)
a[-1] = masked
x /= a
xm /= a
assert_equal(x, y / a)
assert_equal(xm, y / a)
assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0)))
def test_inplace_division_misc(self):
x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.]
y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
z = xm / ym
assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
assert_equal(z._data,
[1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
xm = xm.copy()
xm /= ym
assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
assert_equal(z._data,
[1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
def test_datafriendly_add(self):
# Test keeping data w/ (inplace) addition
x = array([1, 2, 3], mask=[0, 0, 1])
# Test add w/ scalar
xx = x + 1
assert_equal(xx.data, [2, 3, 3])
assert_equal(xx.mask, [0, 0, 1])
# Test iadd w/ scalar
x += 1
assert_equal(x.data, [2, 3, 3])
assert_equal(x.mask, [0, 0, 1])
# Test add w/ array
x = array([1, 2, 3], mask=[0, 0, 1])
xx = x + array([1, 2, 3], mask=[1, 0, 0])
assert_equal(xx.data, [1, 4, 3])
assert_equal(xx.mask, [1, 0, 1])
# Test iadd w/ array
x = array([1, 2, 3], mask=[0, 0, 1])
x += array([1, 2, 3], mask=[1, 0, 0])
assert_equal(x.data, [1, 4, 3])
assert_equal(x.mask, [1, 0, 1])
def test_datafriendly_sub(self):
# Test keeping data w/ (inplace) subtraction
# Test sub w/ scalar
x = array([1, 2, 3], mask=[0, 0, 1])
xx = x - 1
assert_equal(xx.data, [0, 1, 3])
assert_equal(xx.mask, [0, 0, 1])
# Test isub w/ scalar
x = array([1, 2, 3], mask=[0, 0, 1])
x -= 1
assert_equal(x.data, [0, 1, 3])
assert_equal(x.mask, [0, 0, 1])
# Test sub w/ array
x = array([1, 2, 3], mask=[0, 0, 1])
xx = x - array([1, 2, 3], mask=[1, 0, 0])
assert_equal(xx.data, [1, 0, 3])
assert_equal(xx.mask, [1, 0, 1])
# Test isub w/ array
x = array([1, 2, 3], mask=[0, 0, 1])
x -= array([1, 2, 3], mask=[1, 0, 0])
assert_equal(x.data, [1, 0, 3])
assert_equal(x.mask, [1, 0, 1])
def test_datafriendly_mul(self):
# Test keeping data w/ (inplace) multiplication
# Test mul w/ scalar
x = array([1, 2, 3], mask=[0, 0, 1])
xx = x * 2
assert_equal(xx.data, [2, 4, 3])
assert_equal(xx.mask, [0, 0, 1])
# Test imul w/ scalar
x = array([1, 2, 3], mask=[0, 0, 1])
x *= 2
assert_equal(x.data, [2, 4, 3])
assert_equal(x.mask, [0, 0, 1])
# Test mul w/ array
x = array([1, 2, 3], mask=[0, 0, 1])
xx = x * array([10, 20, 30], mask=[1, 0, 0])
assert_equal(xx.data, [1, 40, 3])
assert_equal(xx.mask, [1, 0, 1])
# Test imul w/ array
x = array([1, 2, 3], mask=[0, 0, 1])
x *= array([10, 20, 30], mask=[1, 0, 0])
assert_equal(x.data, [1, 40, 3])
assert_equal(x.mask, [1, 0, 1])
def test_datafriendly_div(self):
# Test keeping data w/ (inplace) division
# Test div on scalar
x = array([1, 2, 3], mask=[0, 0, 1])
xx = x / 2.
assert_equal(xx.data, [1 / 2., 2 / 2., 3])
assert_equal(xx.mask, [0, 0, 1])
# Test idiv on scalar
x = array([1., 2., 3.], mask=[0, 0, 1])
x /= 2.
assert_equal(x.data, [1 / 2., 2 / 2., 3])
assert_equal(x.mask, [0, 0, 1])
# Test div on array
x = array([1., 2., 3.], mask=[0, 0, 1])
xx = x / array([10., 20., 30.], mask=[1, 0, 0])
assert_equal(xx.data, [1., 2. / 20., 3.])
assert_equal(xx.mask, [1, 0, 1])
# Test idiv on array
x = array([1., 2., 3.], mask=[0, 0, 1])
x /= array([10., 20., 30.], mask=[1, 0, 0])
assert_equal(x.data, [1., 2 / 20., 3.])
assert_equal(x.mask, [1, 0, 1])
def test_datafriendly_pow(self):
# Test keeping data w/ (inplace) power
# Test pow on scalar
x = array([1., 2., 3.], mask=[0, 0, 1])
xx = x ** 2.5
assert_equal(xx.data, [1., 2. ** 2.5, 3.])
assert_equal(xx.mask, [0, 0, 1])
# Test ipow on scalar
x **= 2.5
assert_equal(x.data, [1., 2. ** 2.5, 3])
assert_equal(x.mask, [0, 0, 1])
def test_datafriendly_add_arrays(self):
a = array([[1, 1], [3, 3]])
b = array([1, 1], mask=[0, 0])
a += b
assert_equal(a, [[2, 2], [4, 4]])
if a.mask is not nomask:
assert_equal(a.mask, [[0, 0], [0, 0]])
a = array([[1, 1], [3, 3]])
b = array([1, 1], mask=[0, 1])
a += b
assert_equal(a, [[2, 2], [4, 4]])
assert_equal(a.mask, [[0, 1], [0, 1]])
def test_datafriendly_sub_arrays(self):
a = array([[1, 1], [3, 3]])
b = array([1, 1], mask=[0, 0])
a -= b
assert_equal(a, [[0, 0], [2, 2]])
if a.mask is not nomask:
assert_equal(a.mask, [[0, 0], [0, 0]])
a = array([[1, 1], [3, 3]])
b = array([1, 1], mask=[0, 1])
a -= b
assert_equal(a, [[0, 0], [2, 2]])
assert_equal(a.mask, [[0, 1], [0, 1]])
def test_datafriendly_mul_arrays(self):
a = array([[1, 1], [3, 3]])
b = array([1, 1], mask=[0, 0])
a *= b
assert_equal(a, [[1, 1], [3, 3]])
if a.mask is not nomask:
assert_equal(a.mask, [[0, 0], [0, 0]])
a = array([[1, 1], [3, 3]])
b = array([1, 1], mask=[0, 1])
a *= b
assert_equal(a, [[1, 1], [3, 3]])
assert_equal(a.mask, [[0, 1], [0, 1]])
def test_inplace_addition_scalar_type(self):
# Test of inplace additions
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
xm[2] = masked
x += t(1)
assert_equal(x, y + t(1))
xm += t(1)
assert_equal(xm, y + t(1))
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_addition_array_type(self):
# Test of inplace additions
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
m = xm.mask
a = arange(10, dtype=t)
a[-1] = masked
x += a
xm += a
assert_equal(x, y + a)
assert_equal(xm, y + a)
assert_equal(xm.mask, mask_or(m, a.mask))
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_subtraction_scalar_type(self):
# Test of inplace subtractions
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
x -= t(1)
assert_equal(x, y - t(1))
xm -= t(1)
assert_equal(xm, y - t(1))
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_subtraction_array_type(self):
# Test of inplace subtractions
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
m = xm.mask
a = arange(10, dtype=t)
a[-1] = masked
x -= a
xm -= a
assert_equal(x, y - a)
assert_equal(xm, y - a)
assert_equal(xm.mask, mask_or(m, a.mask))
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_multiplication_scalar_type(self):
# Test of inplace multiplication
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
x *= t(2)
assert_equal(x, y * t(2))
xm *= t(2)
assert_equal(xm, y * t(2))
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_multiplication_array_type(self):
# Test of inplace multiplication
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
m = xm.mask
a = arange(10, dtype=t)
a[-1] = masked
x *= a
xm *= a
assert_equal(x, y * a)
assert_equal(xm, y * a)
assert_equal(xm.mask, mask_or(m, a.mask))
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_floor_division_scalar_type(self):
# Test of inplace division
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
x = arange(10, dtype=t) * t(2)
xm = arange(10, dtype=t) * t(2)
xm[2] = masked
x //= t(2)
xm //= t(2)
assert_equal(x, y)
assert_equal(xm, y)
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_floor_division_array_type(self):
# Test of inplace division
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
m = xm.mask
a = arange(10, dtype=t)
a[-1] = masked
x //= a
xm //= a
assert_equal(x, y // a)
assert_equal(xm, y // a)
assert_equal(
xm.mask,
mask_or(mask_or(m, a.mask), (a == t(0)))
)
assert_equal(len(w), 0, "Failed on type=%s." % t)
def test_inplace_division_scalar_type(self):
# Test of inplace division
for t in self.othertypes:
with suppress_warnings() as sup:
sup.record(UserWarning)
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
x = arange(10, dtype=t) * t(2)
xm = arange(10, dtype=t) * t(2)
xm[2] = masked
# May get a DeprecationWarning or a TypeError.
#
# This is a consequence of the fact that this is true divide
# and will require casting to float for calculation and
# casting back to the original type. This will only be raised
# with integers. Whether it is an error or warning is only
# dependent on how stringent the casting rules are.
#
# Will handle the same way.
try:
x /= t(2)
assert_equal(x, y)
except (DeprecationWarning, TypeError) as e:
warnings.warn(str(e), stacklevel=1)
try:
xm /= t(2)
assert_equal(xm, y)
except (DeprecationWarning, TypeError) as e:
warnings.warn(str(e), stacklevel=1)
if issubclass(t, np.integer):
assert_equal(len(sup.log), 2, "Failed on type=%s." % t)
else:
assert_equal(len(sup.log), 0, "Failed on type=%s." % t)
def test_inplace_division_array_type(self):
# Test of inplace division
for t in self.othertypes:
with suppress_warnings() as sup:
sup.record(UserWarning)
(x, y, xm) = (_.astype(t) for _ in self.uint8data)
m = xm.mask
a = arange(10, dtype=t)
a[-1] = masked
# May get a DeprecationWarning or a TypeError.
#
# This is a consequence of the fact that this is true divide
# and will require casting to float for calculation and
# casting back to the original type. This will only be raised
# with integers. Whether it is an error or warning is only
# dependent on how stringent the casting rules are.
#
# Will handle the same way.
try:
x /= a
assert_equal(x, y / a)
except (DeprecationWarning, TypeError) as e:
warnings.warn(str(e), stacklevel=1)
try:
xm /= a
assert_equal(xm, y / a)
assert_equal(
xm.mask,
mask_or(mask_or(m, a.mask), (a == t(0)))
)
except (DeprecationWarning, TypeError) as e:
warnings.warn(str(e), stacklevel=1)
if issubclass(t, np.integer):
assert_equal(len(sup.log), 2, "Failed on type=%s." % t)
else:
assert_equal(len(sup.log), 0, "Failed on type=%s." % t)
def test_inplace_pow_type(self):
# Test keeping data w/ (inplace) power
for t in self.othertypes:
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings("always")
# Test pow on scalar
x = array([1, 2, 3], mask=[0, 0, 1], dtype=t)
xx = x ** t(2)
xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t)
assert_equal(xx.data, xx_r.data)
assert_equal(xx.mask, xx_r.mask)
# Test ipow on scalar
x **= t(2)
assert_equal(x.data, xx_r.data)
assert_equal(x.mask, xx_r.mask)
assert_equal(len(w), 0, "Failed on type=%s." % t)
class TestMaskedArrayMethods(TestCase):
# Test class for miscellaneous MaskedArrays methods.
def setUp(self):
# Base data definition.
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
X = x.reshape(6, 6)
XX = x.reshape(3, 2, 2, 3)
m = np.array([0, 1, 0, 1, 0, 0,
1, 0, 1, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 0, 0,
0, 0, 1, 0, 1, 0])
mx = array(data=x, mask=m)
mX = array(data=X, mask=m.reshape(X.shape))
mXX = array(data=XX, mask=m.reshape(XX.shape))
m2 = np.array([1, 1, 0, 1, 0, 0,
1, 1, 1, 1, 0, 1,
0, 0, 1, 1, 0, 1,
0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 1, 0,
0, 0, 1, 0, 1, 1])
m2x = array(data=x, mask=m2)
m2X = array(data=X, mask=m2.reshape(X.shape))
m2XX = array(data=XX, mask=m2.reshape(XX.shape))
self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
def test_generic_methods(self):
# Tests some MaskedArray methods.
a = array([1, 3, 2])
assert_equal(a.any(), a._data.any())
assert_equal(a.all(), a._data.all())
assert_equal(a.argmax(), a._data.argmax())
assert_equal(a.argmin(), a._data.argmin())
assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
assert_equal(a.conj(), a._data.conj())
assert_equal(a.conjugate(), a._data.conjugate())
m = array([[1, 2], [3, 4]])
assert_equal(m.diagonal(), m._data.diagonal())
assert_equal(a.sum(), a._data.sum())
assert_equal(a.take([1, 2]), a._data.take([1, 2]))
assert_equal(m.transpose(), m._data.transpose())
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
self.assertTrue(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
self.assertTrue(not allclose(a, b))
b[0] = np.inf
self.assertTrue(allclose(a, b))
# Test allclose w/ masked
a = masked_array(a)
a[-1] = masked
self.assertTrue(allclose(a, b, masked_equal=True))
self.assertTrue(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
self.assertTrue(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
self.assertTrue(allclose(a, a))
def test_allany(self):
# Checks the any/all methods/functions.
x = np.array([[0.13, 0.26, 0.90],
[0.28, 0.33, 0.63],
[0.31, 0.87, 0.70]])
m = np.array([[True, False, False],
[False, False, False],
[True, True, False]], dtype=np.bool_)
mx = masked_array(x, mask=m)
mxbig = (mx > 0.5)
mxsmall = (mx < 0.5)
self.assertFalse(mxbig.all())
self.assertTrue(mxbig.any())
assert_equal(mxbig.all(0), [False, False, True])
assert_equal(mxbig.all(1), [False, False, True])
assert_equal(mxbig.any(0), [False, False, True])
assert_equal(mxbig.any(1), [True, True, True])
self.assertFalse(mxsmall.all())
self.assertTrue(mxsmall.any())
assert_equal(mxsmall.all(0), [True, True, False])
assert_equal(mxsmall.all(1), [False, False, False])
assert_equal(mxsmall.any(0), [True, True, False])
assert_equal(mxsmall.any(1), [True, True, False])
def test_allany_onmatrices(self):
x = np.array([[0.13, 0.26, 0.90],
[0.28, 0.33, 0.63],
[0.31, 0.87, 0.70]])
X = np.matrix(x)
m = np.array([[True, False, False],
[False, False, False],
[True, True, False]], dtype=np.bool_)
mX = masked_array(X, mask=m)
mXbig = (mX > 0.5)
mXsmall = (mX < 0.5)
self.assertFalse(mXbig.all())
self.assertTrue(mXbig.any())
assert_equal(mXbig.all(0), np.matrix([False, False, True]))
assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
assert_equal(mXbig.any(0), np.matrix([False, False, True]))
assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
self.assertFalse(mXsmall.all())
self.assertTrue(mXsmall.any())
assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
def test_allany_oddities(self):
# Some fun with all and any
store = empty((), dtype=bool)
full = array([1, 2, 3], mask=True)
self.assertTrue(full.all() is masked)
full.all(out=store)
self.assertTrue(store)
self.assertTrue(store._mask, True)
self.assertTrue(store is not masked)
store = empty((), dtype=bool)
self.assertTrue(full.any() is masked)
full.any(out=store)
self.assertTrue(not store)
self.assertTrue(store._mask, True)
self.assertTrue(store is not masked)
def test_argmax_argmin(self):
# Tests argmin & argmax on MaskedArrays.
(x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
assert_equal(mx.argmin(), 35)
assert_equal(mX.argmin(), 35)
assert_equal(m2x.argmin(), 4)
assert_equal(m2X.argmin(), 4)
assert_equal(mx.argmax(), 28)
assert_equal(mX.argmax(), 28)
assert_equal(m2x.argmax(), 31)
assert_equal(m2X.argmax(), 31)
assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5])
assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4])
assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0])
assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0])
assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ])
assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3])
assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1])
assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1])
def test_clip(self):
# Tests clip on MaskedArrays.
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])
mx = array(x, mask=m)
clipped = mx.clip(2, 8)
assert_equal(clipped.mask, mx.mask)
assert_equal(clipped._data, x.clip(2, 8))
assert_equal(clipped._data, mx._data.clip(2, 8))
def test_compress(self):
# test compress
a = masked_array([1., 2., 3., 4., 5.], fill_value=9999)
condition = (a > 1.5) & (a < 3.5)
assert_equal(a.compress(condition), [2., 3.])
a[[2, 3]] = masked
b = a.compress(condition)
assert_equal(b._data, [2., 3.])
assert_equal(b._mask, [0, 1])
assert_equal(b.fill_value, 9999)
assert_equal(b, a[condition])
condition = (a < 4.)
b = a.compress(condition)
assert_equal(b._data, [1., 2., 3.])
assert_equal(b._mask, [0, 0, 1])
assert_equal(b.fill_value, 9999)
assert_equal(b, a[condition])
a = masked_array([[10, 20, 30], [40, 50, 60]],
mask=[[0, 0, 1], [1, 0, 0]])
b = a.compress(a.ravel() >= 22)
assert_equal(b._data, [30, 40, 50, 60])
assert_equal(b._mask, [1, 1, 0, 0])
x = np.array([3, 1, 2])
b = a.compress(x >= 2, axis=1)
assert_equal(b._data, [[10, 30], [40, 60]])
assert_equal(b._mask, [[0, 1], [1, 0]])
def test_compressed(self):
# Tests compressed
a = array([1, 2, 3, 4], mask=[0, 0, 0, 0])
b = a.compressed()
assert_equal(b, a)
a[0] = masked
b = a.compressed()
assert_equal(b, [2, 3, 4])
a = array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
b = a.compressed()
assert_equal(b, a)
self.assertTrue(isinstance(b, np.matrix))
a[0, 0] = masked
b = a.compressed()
assert_equal(b, [[2, 3, 4]])
def test_empty(self):
# Tests empty/like
datatype = [('a', int), ('b', float), ('c', '|S8')]
a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
dtype=datatype)
assert_equal(len(a.fill_value.item()), len(datatype))
b = empty_like(a)
assert_equal(b.shape, a.shape)
assert_equal(b.fill_value, a.fill_value)
b = empty(len(a), dtype=datatype)
assert_equal(b.shape, a.shape)
assert_equal(b.fill_value, a.fill_value)
# check empty_like mask handling
a = masked_array([1, 2, 3], mask=[False, True, False])
b = empty_like(a)
assert_(not np.may_share_memory(a.mask, b.mask))
b = a.view(masked_array)
assert_(np.may_share_memory(a.mask, b.mask))
@suppress_copy_mask_on_assignment
def test_put(self):
# Tests put.
d = arange(5)
n = [0, 0, 0, 1, 1]
m = make_mask(n)
x = array(d, mask=m)
self.assertTrue(x[3] is masked)
self.assertTrue(x[4] is masked)
x[[1, 4]] = [10, 40]
self.assertTrue(x[3] is masked)
self.assertTrue(x[4] is not masked)
assert_equal(x, [0, 10, 2, -1, 40])
x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
i = [0, 2, 4, 6]
x.put(i, [6, 4, 2, 0])
assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
put(x, i, [6, 4, 2, 0])
assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
def test_put_nomask(self):
# GitHub issue 6425
x = zeros(10)
z = array([3., -1.], mask=[False, True])
x.put([1, 2], z)
self.assertTrue(x[0] is not masked)
assert_equal(x[0], 0)
self.assertTrue(x[1] is not masked)
assert_equal(x[1], 3)
self.assertTrue(x[2] is masked)
self.assertTrue(x[3] is not masked)
assert_equal(x[3], 0)
def test_put_hardmask(self):
# Tests put on hardmask
d = arange(5)
n = [0, 0, 0, 1, 1]
m = make_mask(n)
xh = array(d + 1, mask=m, hard_mask=True, copy=True)
xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5])
assert_equal(xh._data, [3, 4, 2, 4, 5])
def test_putmask(self):
x = arange(6) + 1
mx = array(x, mask=[0, 0, 0, 1, 1, 1])
mask = [0, 0, 1, 0, 0, 1]
# w/o mask, w/o masked values
xx = x.copy()
putmask(xx, mask, 99)
assert_equal(xx, [1, 2, 99, 4, 5, 99])
# w/ mask, w/o masked values
mxx = mx.copy()
putmask(mxx, mask, 99)
assert_equal(mxx._data, [1, 2, 99, 4, 5, 99])
assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0])
# w/o mask, w/ masked values
values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0])
xx = x.copy()
putmask(xx, mask, values)
assert_equal(xx._data, [1, 2, 30, 4, 5, 60])
assert_equal(xx._mask, [0, 0, 1, 0, 0, 0])
# w/ mask, w/ masked values
mxx = mx.copy()
putmask(mxx, mask, values)
assert_equal(mxx._data, [1, 2, 30, 4, 5, 60])
assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0])
# w/ mask, w/ masked values + hardmask
mxx = mx.copy()
mxx.harden_mask()
putmask(mxx, mask, values)
assert_equal(mxx, [1, 2, 30, 4, 5, 60])
def test_ravel(self):
# Tests ravel
a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])
aravel = a.ravel()
assert_equal(aravel._mask.shape, aravel.shape)
a = array([0, 0], mask=[1, 1])
aravel = a.ravel()
assert_equal(aravel._mask.shape, a.shape)
a = array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
aravel = a.ravel()
assert_equal(aravel.shape, (1, 5))
assert_equal(aravel._mask.shape, a.shape)
# Checks that small_mask is preserved
a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)
assert_equal(a.ravel()._mask, [0, 0, 0, 0])
# Test that the fill_value is preserved
a.fill_value = -99
a.shape = (2, 2)
ar = a.ravel()
assert_equal(ar._mask, [0, 0, 0, 0])
assert_equal(ar._data, [1, 2, 3, 4])
assert_equal(ar.fill_value, -99)
# Test index ordering
assert_equal(a.ravel(order='C'), [1, 2, 3, 4])
assert_equal(a.ravel(order='F'), [1, 3, 2, 4])
def test_reshape(self):
# Tests reshape
x = arange(4)
x[0] = masked
y = x.reshape(2, 2)
assert_equal(y.shape, (2, 2,))
assert_equal(y._mask.shape, (2, 2,))
assert_equal(x.shape, (4,))
assert_equal(x._mask.shape, (4,))
def test_sort(self):
# Test sort
x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
sortedx = sort(x)
assert_equal(sortedx._data, [1, 2, 3, 4])
assert_equal(sortedx._mask, [0, 0, 0, 1])
sortedx = sort(x, endwith=False)
assert_equal(sortedx._data, [4, 1, 2, 3])
assert_equal(sortedx._mask, [1, 0, 0, 0])
x.sort()
assert_equal(x._data, [1, 2, 3, 4])
assert_equal(x._mask, [0, 0, 0, 1])
x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
x.sort(endwith=False)
assert_equal(x._data, [4, 1, 2, 3])
assert_equal(x._mask, [1, 0, 0, 0])
x = [1, 4, 2, 3]
sortedx = sort(x)
self.assertTrue(not isinstance(sorted, MaskedArray))
x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8)
sortedx = sort(x, endwith=False)
assert_equal(sortedx._data, [-2, -1, 0, 1, 2])
x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8)
sortedx = sort(x, endwith=False)
assert_equal(sortedx._data, [1, 2, -2, -1, 0])
assert_equal(sortedx._mask, [1, 1, 0, 0, 0])
def test_sort_2d(self):
# Check sort of 2D array.
# 2D array w/o mask
a = masked_array([[8, 4, 1], [2, 0, 9]])
a.sort(0)
assert_equal(a, [[2, 0, 1], [8, 4, 9]])
a = masked_array([[8, 4, 1], [2, 0, 9]])
a.sort(1)
assert_equal(a, [[1, 4, 8], [0, 2, 9]])
# 2D array w/mask
a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
a.sort(0)
assert_equal(a, [[2, 0, 1], [8, 4, 9]])
assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]])
a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
a.sort(1)
assert_equal(a, [[1, 4, 8], [0, 2, 9]])
assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]])
# 3D
a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]],
[[1, 2, 3], [7, 8, 9], [4, 5, 6]],
[[7, 8, 9], [1, 2, 3], [4, 5, 6]],
[[4, 5, 6], [1, 2, 3], [7, 8, 9]]])
a[a % 4 == 0] = masked
am = a.copy()
an = a.filled(99)
am.sort(0)
an.sort(0)
assert_equal(am, an)
am = a.copy()
an = a.filled(99)
am.sort(1)
an.sort(1)
assert_equal(am, an)
am = a.copy()
an = a.filled(99)
am.sort(2)
an.sort(2)
assert_equal(am, an)
def test_sort_flexible(self):
# Test sort on flexible dtype.
a = array(
data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)],
mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)],
dtype=[('A', int), ('B', int)])
test = sort(a)
b = array(
data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)],
mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)],
dtype=[('A', int), ('B', int)])
assert_equal(test, b)
assert_equal(test.mask, b.mask)
test = sort(a, endwith=False)
b = array(
data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3), ],
mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), ],
dtype=[('A', int), ('B', int)])
assert_equal(test, b)
assert_equal(test.mask, b.mask)
def test_argsort(self):
# Test argsort
a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0])
assert_equal(np.argsort(a), argsort(a))
def test_squeeze(self):
# Check squeeze
data = masked_array([[1, 2, 3]])
assert_equal(data.squeeze(), [1, 2, 3])
data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]])
assert_equal(data.squeeze(), [1, 2, 3])
assert_equal(data.squeeze()._mask, [1, 1, 1])
data = masked_array([[1]], mask=True)
self.assertTrue(data.squeeze() is masked)
def test_swapaxes(self):
# Tests swapaxes on MaskedArrays.
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
m = np.array([0, 1, 0, 1, 0, 0,
1, 0, 1, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 0, 0,
0, 0, 1, 0, 1, 0])
mX = array(x, mask=m).reshape(6, 6)
mXX = mX.reshape(3, 2, 2, 3)
mXswapped = mX.swapaxes(0, 1)
assert_equal(mXswapped[-1], mX[:, -1])
mXXswapped = mXX.swapaxes(0, 2)
assert_equal(mXXswapped.shape, (2, 2, 3, 3))
def test_take(self):
# Tests take
x = masked_array([10, 20, 30, 40], [0, 1, 0, 1])
assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1]))
assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]])
assert_equal(x.take([[0, 1], [0, 1]]),
masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]]))
# assert_equal crashes when passed np.ma.mask
self.assertIs(x[1], np.ma.masked)
self.assertIs(x.take(1), np.ma.masked)
x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]])
assert_equal(x.take([0, 2], axis=1),
array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
assert_equal(take(x, [0, 2], axis=1),
array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
def test_take_masked_indices(self):
# Test take w/ masked indices
a = np.array((40, 18, 37, 9, 22))
indices = np.arange(3)[None,:] + np.arange(5)[:, None]
mindices = array(indices, mask=(indices >= len(a)))
# No mask
test = take(a, mindices, mode='clip')
ctrl = array([[40, 18, 37],
[18, 37, 9],
[37, 9, 22],
[9, 22, 22],
[22, 22, 22]])
assert_equal(test, ctrl)
# Masked indices
test = take(a, mindices)
ctrl = array([[40, 18, 37],
[18, 37, 9],
[37, 9, 22],
[9, 22, 40],
[22, 40, 40]])
ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked
assert_equal(test, ctrl)
assert_equal(test.mask, ctrl.mask)
# Masked input + masked indices
a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0))
test = take(a, mindices)
ctrl[0, 1] = ctrl[1, 0] = masked
assert_equal(test, ctrl)
assert_equal(test.mask, ctrl.mask)
def test_tolist(self):
# Tests to list
# ... on 1D
x = array(np.arange(12))
x[[1, -2]] = masked
xlist = x.tolist()
self.assertTrue(xlist[1] is None)
self.assertTrue(xlist[-2] is None)
# ... on 2D
x.shape = (3, 4)
xlist = x.tolist()
ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]]
assert_equal(xlist[0], [0, None, 2, 3])
assert_equal(xlist[1], [4, 5, 6, 7])
assert_equal(xlist[2], [8, 9, None, 11])
assert_equal(xlist, ctrl)
# ... on structured array w/ masked records
x = array(list(zip([1, 2, 3],
[1.1, 2.2, 3.3],
['one', 'two', 'thr'])),
dtype=[('a', int), ('b', float), ('c', '|S8')])
x[-1] = masked
assert_equal(x.tolist(),
[(1, 1.1, asbytes('one')),
(2, 2.2, asbytes('two')),
(None, None, None)])
# ... on structured array w/ masked fields
a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)],
dtype=[('a', int), ('b', int)])
test = a.tolist()
assert_equal(test, [[1, None], [3, 4]])
# ... on mvoid
a = a[0]
test = a.tolist()
assert_equal(test, [1, None])
def test_tolist_specialcase(self):
# Test mvoid.tolist: make sure we return a standard Python object
a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)])
# w/o mask: each entry is a np.void whose elements are standard Python
for entry in a:
for item in entry.tolist():
assert_(not isinstance(item, np.generic))
# w/ mask: each entry is a ma.void whose elements should be
# standard Python
a.mask[0] = (0, 1)
for entry in a:
for item in entry.tolist():
assert_(not isinstance(item, np.generic))
def test_toflex(self):
# Test the conversion to records
data = arange(10)
record = data.toflex()
assert_equal(record['_data'], data._data)
assert_equal(record['_mask'], data._mask)
data[[0, 1, 2, -1]] = masked
record = data.toflex()
assert_equal(record['_data'], data._data)
assert_equal(record['_mask'], data._mask)
ndtype = [('i', int), ('s', '|S3'), ('f', float)]
data = array([(i, s, f) for (i, s, f) in zip(np.arange(10),
'ABCDEFGHIJKLM',
np.random.rand(10))],
dtype=ndtype)
data[[0, 1, 2, -1]] = masked
record = data.toflex()
assert_equal(record['_data'], data._data)
assert_equal(record['_mask'], data._mask)
ndtype = np.dtype("int, (2,3)float, float")
data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10),
np.random.rand(10),
np.random.rand(10))],
dtype=ndtype)
data[[0, 1, 2, -1]] = masked
record = data.toflex()
assert_equal_records(record['_data'], data._data)
assert_equal_records(record['_mask'], data._mask)
def test_fromflex(self):
# Test the reconstruction of a masked_array from a record
a = array([1, 2, 3])
test = fromflex(a.toflex())
assert_equal(test, a)
assert_equal(test.mask, a.mask)
a = array([1, 2, 3], mask=[0, 0, 1])
test = fromflex(a.toflex())
assert_equal(test, a)
assert_equal(test.mask, a.mask)
a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)],
dtype=[('A', int), ('B', float)])
test = fromflex(a.toflex())
assert_equal(test, a)
assert_equal(test.data, a.data)
def test_arraymethod(self):
# Test a _arraymethod w/ n argument
marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0])
control = masked_array([[1], [2], [3], [4], [5]],
mask=[0, 0, 1, 0, 0])
assert_equal(marray.T, control)
assert_equal(marray.transpose(), control)
assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0))
class TestMaskedArrayMathMethods(TestCase):
def setUp(self):
# Base data definition.
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
X = x.reshape(6, 6)
XX = x.reshape(3, 2, 2, 3)
m = np.array([0, 1, 0, 1, 0, 0,
1, 0, 1, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 0, 0,
0, 0, 1, 0, 1, 0])
mx = array(data=x, mask=m)
mX = array(data=X, mask=m.reshape(X.shape))
mXX = array(data=XX, mask=m.reshape(XX.shape))
m2 = np.array([1, 1, 0, 1, 0, 0,
1, 1, 1, 1, 0, 1,
0, 0, 1, 1, 0, 1,
0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 1, 0,
0, 0, 1, 0, 1, 1])
m2x = array(data=x, mask=m2)
m2X = array(data=X, mask=m2.reshape(X.shape))
m2XX = array(data=XX, mask=m2.reshape(XX.shape))
self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
def test_cumsumprod(self):
# Tests cumsum & cumprod on MaskedArrays.
(x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
mXcp = mX.cumsum(0)
assert_equal(mXcp._data, mX.filled(0).cumsum(0))
mXcp = mX.cumsum(1)
assert_equal(mXcp._data, mX.filled(0).cumsum(1))
mXcp = mX.cumprod(0)
assert_equal(mXcp._data, mX.filled(1).cumprod(0))
mXcp = mX.cumprod(1)
assert_equal(mXcp._data, mX.filled(1).cumprod(1))
def test_cumsumprod_with_output(self):
# Tests cumsum/cumprod w/ output
xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
xm[:, 0] = xm[0] = xm[-1, -1] = masked
for funcname in ('cumsum', 'cumprod'):
npfunc = getattr(np, funcname)
xmmeth = getattr(xm, funcname)
# A ndarray as explicit input
output = np.empty((3, 4), dtype=float)
output.fill(-9999)
result = npfunc(xm, axis=0, out=output)
# ... the result should be the given output
self.assertTrue(result is output)
assert_equal(result, xmmeth(axis=0, out=output))
output = empty((3, 4), dtype=int)
result = xmmeth(axis=0, out=output)
self.assertTrue(result is output)
def test_ptp(self):
# Tests ptp on MaskedArrays.
(x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
(n, m) = X.shape
assert_equal(mx.ptp(), mx.compressed().ptp())
rows = np.zeros(n, np.float)
cols = np.zeros(m, np.float)
for k in range(m):
cols[k] = mX[:, k].compressed().ptp()
for k in range(n):
rows[k] = mX[k].compressed().ptp()
assert_equal(mX.ptp(0), cols)
assert_equal(mX.ptp(1), rows)
def test_add_object(self):
x = masked_array(['a', 'b'], mask=[1, 0], dtype=object)
y = x + 'x'
assert_equal(y[1], 'bx')
assert_(y.mask[0])
def test_sum_object(self):
# Test sum on object dtype
a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=np.object)
assert_equal(a.sum(), 5)
a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
assert_equal(a.sum(axis=0), [5, 7, 9])
def test_prod_object(self):
# Test prod on object dtype
a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=np.object)
assert_equal(a.prod(), 2 * 3)
a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
assert_equal(a.prod(axis=0), [4, 10, 18])
def test_meananom_object(self):
# Test mean/anom on object dtype
a = masked_array([1, 2, 3], dtype=np.object)
assert_equal(a.mean(), 2)
assert_equal(a.anom(), [-1, 0, 1])
def test_trace(self):
# Tests trace on MaskedArrays.
(x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
mXdiag = mX.diagonal()
assert_equal(mX.trace(), mX.diagonal().compressed().sum())
assert_almost_equal(mX.trace(),
X.trace() - sum(mXdiag.mask * X.diagonal(),
axis=0))
assert_equal(np.trace(mX), mX.trace())
def test_dot(self):
# Tests dot on MaskedArrays.
(x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
fx = mx.filled(0)
r = mx.dot(mx)
assert_almost_equal(r.filled(0), fx.dot(fx))
assert_(r.mask is nomask)
fX = mX.filled(0)
r = mX.dot(mX)
assert_almost_equal(r.filled(0), fX.dot(fX))
assert_(r.mask[1,3])
r1 = empty_like(r)
mX.dot(mX, out=r1)
assert_almost_equal(r, r1)
mYY = mXX.swapaxes(-1, -2)
fXX, fYY = mXX.filled(0), mYY.filled(0)
r = mXX.dot(mYY)
assert_almost_equal(r.filled(0), fXX.dot(fYY))
r1 = empty_like(r)
mXX.dot(mYY, out=r1)
assert_almost_equal(r, r1)
def test_dot_shape_mismatch(self):
# regression test
x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
z = masked_array([[0,1],[3,3]])
x.dot(y, out=z)
assert_almost_equal(z.filled(0), [[1, 0], [15, 16]])
assert_almost_equal(z.mask, [[0, 1], [0, 0]])
def test_varmean_nomask(self):
# gh-5769
foo = array([1,2,3,4], dtype='f8')
bar = array([1,2,3,4], dtype='f8')
assert_equal(type(foo.mean()), np.float64)
assert_equal(type(foo.var()), np.float64)
assert((foo.mean() == bar.mean()) is np.bool_(True))
# check array type is preserved and out works
foo = array(np.arange(16).reshape((4,4)), dtype='f8')
bar = empty(4, dtype='f4')
assert_equal(type(foo.mean(axis=1)), MaskedArray)
assert_equal(type(foo.var(axis=1)), MaskedArray)
assert_(foo.mean(axis=1, out=bar) is bar)
assert_(foo.var(axis=1, out=bar) is bar)
def test_varstd(self):
# Tests var & std on MaskedArrays.
(x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
assert_almost_equal(mX.var(axis=None), mX.compressed().var())
assert_almost_equal(mX.std(axis=None), mX.compressed().std())
assert_almost_equal(mX.std(axis=None, ddof=1),
mX.compressed().std(ddof=1))
assert_almost_equal(mX.var(axis=None, ddof=1),
mX.compressed().var(ddof=1))
assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
assert_equal(mX.var().shape, X.var().shape)
(mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
assert_almost_equal(mX.var(axis=None, ddof=2),
mX.compressed().var(ddof=2))
assert_almost_equal(mX.std(axis=None, ddof=2),
mX.compressed().std(ddof=2))
for k in range(6):
assert_almost_equal(mXvar1[k], mX[k].compressed().var())
assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
assert_almost_equal(np.sqrt(mXvar0[k]),
mX[:, k].compressed().std())
@suppress_copy_mask_on_assignment
def test_varstd_specialcases(self):
# Test a special case for var
nout = np.array(-1, dtype=float)
mout = array(-1, dtype=float)
x = array(arange(10), mask=True)
for methodname in ('var', 'std'):
method = getattr(x, methodname)
self.assertTrue(method() is masked)
self.assertTrue(method(0) is masked)
self.assertTrue(method(-1) is masked)
# Using a masked array as explicit output
method(out=mout)
self.assertTrue(mout is not masked)
assert_equal(mout.mask, True)
# Using a ndarray as explicit output
method(out=nout)
self.assertTrue(np.isnan(nout))
x = array(arange(10), mask=True)
x[-1] = 9
for methodname in ('var', 'std'):
method = getattr(x, methodname)
self.assertTrue(method(ddof=1) is masked)
self.assertTrue(method(0, ddof=1) is masked)
self.assertTrue(method(-1, ddof=1) is masked)
# Using a masked array as explicit output
method(out=mout, ddof=1)
self.assertTrue(mout is not masked)
assert_equal(mout.mask, True)
# Using a ndarray as explicit output
method(out=nout, ddof=1)
self.assertTrue(np.isnan(nout))
def test_varstd_ddof(self):
a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]])
test = a.std(axis=0, ddof=0)
assert_equal(test.filled(0), [0, 0, 0])
assert_equal(test.mask, [0, 0, 1])
test = a.std(axis=0, ddof=1)
assert_equal(test.filled(0), [0, 0, 0])
assert_equal(test.mask, [0, 0, 1])
test = a.std(axis=0, ddof=2)
assert_equal(test.filled(0), [0, 0, 0])
assert_equal(test.mask, [1, 1, 1])
def test_diag(self):
# Test diag
x = arange(9).reshape((3, 3))
x[1, 1] = masked
out = np.diag(x)
assert_equal(out, [0, 4, 8])
out = diag(x)
assert_equal(out, [0, 4, 8])
assert_equal(out.mask, [0, 1, 0])
out = diag(out)
control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]],
mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
assert_equal(out, control)
def test_axis_methods_nomask(self):
# Test the combination nomask & methods w/ axis
a = array([[1, 2, 3], [4, 5, 6]])
assert_equal(a.sum(0), [5, 7, 9])
assert_equal(a.sum(-1), [6, 15])
assert_equal(a.sum(1), [6, 15])
assert_equal(a.prod(0), [4, 10, 18])
assert_equal(a.prod(-1), [6, 120])
assert_equal(a.prod(1), [6, 120])
assert_equal(a.min(0), [1, 2, 3])
assert_equal(a.min(-1), [1, 4])
assert_equal(a.min(1), [1, 4])
assert_equal(a.max(0), [4, 5, 6])
assert_equal(a.max(-1), [3, 6])
assert_equal(a.max(1), [3, 6])
class TestMaskedArrayMathMethodsComplex(TestCase):
# Test class for miscellaneous MaskedArrays methods.
def setUp(self):
# Base data definition.
x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
6.04, 9.63, 7.712, 3.382, 4.489, 6.479j,
7.189j, 9.645, 5.395, 4.961, 9.894, 2.893,
7.357, 9.828, 6.272, 3.758, 6.693, 0.993j])
X = x.reshape(6, 6)
XX = x.reshape(3, 2, 2, 3)
m = np.array([0, 1, 0, 1, 0, 0,
1, 0, 1, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 0, 0,
0, 0, 1, 0, 1, 0])
mx = array(data=x, mask=m)
mX = array(data=X, mask=m.reshape(X.shape))
mXX = array(data=XX, mask=m.reshape(XX.shape))
m2 = np.array([1, 1, 0, 1, 0, 0,
1, 1, 1, 1, 0, 1,
0, 0, 1, 1, 0, 1,
0, 0, 0, 1, 1, 1,
1, 0, 0, 1, 1, 0,
0, 0, 1, 0, 1, 1])
m2x = array(data=x, mask=m2)
m2X = array(data=X, mask=m2.reshape(X.shape))
m2XX = array(data=XX, mask=m2.reshape(XX.shape))
self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
def test_varstd(self):
# Tests var & std on MaskedArrays.
(x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
assert_almost_equal(mX.var(axis=None), mX.compressed().var())
assert_almost_equal(mX.std(axis=None), mX.compressed().std())
assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
assert_equal(mX.var().shape, X.var().shape)
(mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
assert_almost_equal(mX.var(axis=None, ddof=2),
mX.compressed().var(ddof=2))
assert_almost_equal(mX.std(axis=None, ddof=2),
mX.compressed().std(ddof=2))
for k in range(6):
assert_almost_equal(mXvar1[k], mX[k].compressed().var())
assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
assert_almost_equal(np.sqrt(mXvar0[k]),
mX[:, k].compressed().std())
class TestMaskedArrayFunctions(TestCase):
# Test class for miscellaneous functions.
def setUp(self):
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
xm.set_fill_value(1e+20)
self.info = (xm, ym)
def test_masked_where_bool(self):
x = [1, 2]
y = masked_where(False, x)
assert_equal(y, [1, 2])
assert_equal(y[1], 2)
def test_masked_equal_wlist(self):
x = [1, 2, 3]
mx = masked_equal(x, 3)
assert_equal(mx, x)
assert_equal(mx._mask, [0, 0, 1])
mx = masked_not_equal(x, 3)
assert_equal(mx, x)
assert_equal(mx._mask, [1, 1, 0])
def test_masked_equal_fill_value(self):
x = [1, 2, 3]
mx = masked_equal(x, 3)
assert_equal(mx._mask, [0, 0, 1])
assert_equal(mx.fill_value, 3)
def test_masked_where_condition(self):
# Tests masking functions.
x = array([1., 2., 3., 4., 5.])
x[2] = masked
assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2))
assert_equal(masked_where(greater_equal(x, 2), x),
masked_greater_equal(x, 2))
assert_equal(masked_where(less(x, 2), x), masked_less(x, 2))
assert_equal(masked_where(less_equal(x, 2), x),
masked_less_equal(x, 2))
assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2))
assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
[99, 99, 3, 4, 5])
def test_masked_where_oddities(self):
# Tests some generic features.
atest = ones((10, 10, 10), dtype=float)
btest = zeros(atest.shape, MaskType)
ctest = masked_where(btest, atest)
assert_equal(atest, ctest)
def test_masked_where_shape_constraint(self):
a = arange(10)
try:
test = masked_equal(1, a)
except IndexError:
pass
else:
raise AssertionError("Should have failed...")
test = masked_equal(a, 1)
assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
def test_masked_where_structured(self):
# test that masked_where on a structured array sets a structured
# mask (see issue #2972)
a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")])
am = np.ma.masked_where(a["A"] < 5, a)
assert_equal(am.mask.dtype.names, am.dtype.names)
assert_equal(am["A"],
np.ma.masked_array(np.zeros(10), np.ones(10)))
def test_masked_otherfunctions(self):
assert_equal(masked_inside(list(range(5)), 1, 3),
[0, 199, 199, 199, 4])
assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])
assert_equal(masked_inside(array(list(range(5)),
mask=[1, 0, 0, 0, 0]), 1, 3).mask,
[1, 1, 1, 1, 0])
assert_equal(masked_outside(array(list(range(5)),
mask=[0, 1, 0, 0, 0]), 1, 3).mask,
[1, 1, 0, 0, 1])
assert_equal(masked_equal(array(list(range(5)),
mask=[1, 0, 0, 0, 0]), 2).mask,
[1, 0, 1, 0, 0])
assert_equal(masked_not_equal(array([2, 2, 1, 2, 1],
mask=[1, 0, 0, 0, 0]), 2).mask,
[1, 0, 1, 0, 1])
def test_round(self):
a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890],
mask=[0, 1, 0, 0, 0])
assert_equal(a.round(), [1., 2., 3., 5., 6.])
assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7])
assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679])
b = empty_like(a)
a.round(out=b)
assert_equal(b, [1., 2., 3., 5., 6.])
x = array([1., 2., 3., 4., 5.])
c = array([1, 1, 1, 0, 0])
x[2] = masked
z = where(c, x, -x)
assert_equal(z, [1., 2., 0., -4., -5])
c[0] = masked
z = where(c, x, -x)
assert_equal(z, [1., 2., 0., -4., -5])
assert_(z[0] is masked)
assert_(z[1] is not masked)
assert_(z[2] is masked)
def test_round_with_output(self):
# Testing round with an explicit output
xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
xm[:, 0] = xm[0] = xm[-1, -1] = masked
# A ndarray as explicit input
output = np.empty((3, 4), dtype=float)
output.fill(-9999)
result = np.round(xm, decimals=2, out=output)
# ... the result should be the given output
self.assertTrue(result is output)
assert_equal(result, xm.round(decimals=2, out=output))
output = empty((3, 4), dtype=float)
result = xm.round(decimals=2, out=output)
self.assertTrue(result is output)
def test_round_with_scalar(self):
# Testing round with scalar/zero dimension input
# GH issue 2244
a = array(1.1, mask=[False])
assert_equal(a.round(), 1)
a = array(1.1, mask=[True])
assert_(a.round() is masked)
a = array(1.1, mask=[False])
output = np.empty(1, dtype=float)
output.fill(-9999)
a.round(out=output)
assert_equal(output, 1)
a = array(1.1, mask=[False])
output = array(-9999., mask=[True])
a.round(out=output)
assert_equal(output[()], 1)
a = array(1.1, mask=[True])
output = array(-9999., mask=[False])
a.round(out=output)
assert_(output[()] is masked)
def test_identity(self):
a = identity(5)
self.assertTrue(isinstance(a, MaskedArray))
assert_equal(a, np.identity(5))
def test_power(self):
x = -1.1
assert_almost_equal(power(x, 2.), 1.21)
self.assertTrue(power(x, masked) is masked)
x = array([-1.1, -1.1, 1.1, 1.1, 0.])
b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1])
y = power(x, b)
assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.])
assert_equal(y._mask, [1, 0, 0, 0, 1])
b.mask = nomask
y = power(x, b)
assert_equal(y._mask, [1, 0, 0, 0, 1])
z = x ** b
assert_equal(z._mask, y._mask)
assert_almost_equal(z, y)
assert_almost_equal(z._data, y._data)
x **= b
assert_equal(x._mask, y._mask)
assert_almost_equal(x, y)
assert_almost_equal(x._data, y._data)
def test_power_with_broadcasting(self):
# Test power w/ broadcasting
a2 = np.array([[1., 2., 3.], [4., 5., 6.]])
a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]])
b1 = np.array([2, 4, 3])
b2 = np.array([b1, b1])
b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]])
ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]],
mask=[[1, 1, 0], [0, 1, 1]])
# No broadcasting, base & exp w/ mask
test = a2m ** b2m
assert_equal(test, ctrl)
assert_equal(test.mask, ctrl.mask)
# No broadcasting, base w/ mask, exp w/o mask
test = a2m ** b2
assert_equal(test, ctrl)
assert_equal(test.mask, a2m.mask)
# No broadcasting, base w/o mask, exp w/ mask
test = a2 ** b2m
assert_equal(test, ctrl)
assert_equal(test.mask, b2m.mask)
ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]],
mask=[[0, 1, 0], [0, 1, 0]])
test = b1 ** b2m
assert_equal(test, ctrl)
assert_equal(test.mask, ctrl.mask)
test = b2m ** b1
assert_equal(test, ctrl)
assert_equal(test.mask, ctrl.mask)
def test_where(self):
# Test the where function
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
xm = masked_array(x, mask=m1)
ym = masked_array(y, mask=m2)
xm.set_fill_value(1e+20)
d = where(xm > 2, xm, -9)
assert_equal(d, [-9., -9., -9., -9., -9., 4.,
-9., -9., 10., -9., -9., 3.])
assert_equal(d._mask, xm._mask)
d = where(xm > 2, -9, ym)
assert_equal(d, [5., 0., 3., 2., -1., -9.,
-9., -10., -9., 1., 0., -9.])
assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0])
d = where(xm > 2, xm, masked)
assert_equal(d, [-9., -9., -9., -9., -9., 4.,
-9., -9., 10., -9., -9., 3.])
tmp = xm._mask.copy()
tmp[(xm <= 2).filled(True)] = True
assert_equal(d._mask, tmp)
ixm = xm.astype(int)
d = where(ixm > 2, ixm, masked)
assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3])
assert_equal(d.dtype, ixm.dtype)
def test_where_object(self):
a = np.array(None)
b = masked_array(None)
r = b.copy()
assert_equal(np.ma.where(True, a, a), r)
assert_equal(np.ma.where(True, b, b), r)
def test_where_with_masked_choice(self):
x = arange(10)
x[3] = masked
c = x >= 8
# Set False to masked
z = where(c, x, masked)
assert_(z.dtype is x.dtype)
assert_(z[3] is masked)
assert_(z[4] is masked)
assert_(z[7] is masked)
assert_(z[8] is not masked)
assert_(z[9] is not masked)
assert_equal(x, z)
# Set True to masked
z = where(c, masked, x)
assert_(z.dtype is x.dtype)
assert_(z[3] is masked)
assert_(z[4] is not masked)
assert_(z[7] is not masked)
assert_(z[8] is masked)
assert_(z[9] is masked)
def test_where_with_masked_condition(self):
x = array([1., 2., 3., 4., 5.])
c = array([1, 1, 1, 0, 0])
x[2] = masked
z = where(c, x, -x)
assert_equal(z, [1., 2., 0., -4., -5])
c[0] = masked
z = where(c, x, -x)
assert_equal(z, [1., 2., 0., -4., -5])
assert_(z[0] is masked)
assert_(z[1] is not masked)
assert_(z[2] is masked)
x = arange(1, 6)
x[-1] = masked
y = arange(1, 6) * 10
y[2] = masked
c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0])
cm = c.filled(1)
z = where(c, x, y)
zm = where(cm, x, y)
assert_equal(z, zm)
assert_(getmask(zm) is nomask)
assert_equal(zm, [1, 2, 3, 40, 50])
z = where(c, masked, 1)
assert_equal(z, [99, 99, 99, 1, 1])
z = where(c, 1, masked)
assert_equal(z, [99, 1, 1, 99, 99])
def test_where_type(self):
# Test the type conservation with where
x = np.arange(4, dtype=np.int32)
y = np.arange(4, dtype=np.float32) * 2.2
test = where(x > 1.5, y, x).dtype
control = np.find_common_type([np.int32, np.float32], [])
assert_equal(test, control)
def test_choose(self):
# Test choose
choices = [[0, 1, 2, 3], [10, 11, 12, 13],
[20, 21, 22, 23], [30, 31, 32, 33]]
chosen = choose([2, 3, 1, 0], choices)
assert_equal(chosen, array([20, 31, 12, 3]))
chosen = choose([2, 4, 1, 0], choices, mode='clip')
assert_equal(chosen, array([20, 31, 12, 3]))
chosen = choose([2, 4, 1, 0], choices, mode='wrap')
assert_equal(chosen, array([20, 1, 12, 3]))
# Check with some masked indices
indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1])
chosen = choose(indices_, choices, mode='wrap')
assert_equal(chosen, array([99, 1, 12, 99]))
assert_equal(chosen.mask, [1, 0, 0, 1])
# Check with some masked choices
choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
[1, 0, 0, 0], [0, 0, 0, 0]])
indices_ = [2, 3, 1, 0]
chosen = choose(indices_, choices, mode='wrap')
assert_equal(chosen, array([20, 31, 12, 3]))
assert_equal(chosen.mask, [1, 0, 0, 1])
def test_choose_with_out(self):
# Test choose with an explicit out keyword
choices = [[0, 1, 2, 3], [10, 11, 12, 13],
[20, 21, 22, 23], [30, 31, 32, 33]]
store = empty(4, dtype=int)
chosen = choose([2, 3, 1, 0], choices, out=store)
assert_equal(store, array([20, 31, 12, 3]))
self.assertTrue(store is chosen)
# Check with some masked indices + out
store = empty(4, dtype=int)
indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1])
chosen = choose(indices_, choices, mode='wrap', out=store)
assert_equal(store, array([99, 31, 12, 99]))
assert_equal(store.mask, [1, 0, 0, 1])
# Check with some masked choices + out ina ndarray !
choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
[1, 0, 0, 0], [0, 0, 0, 0]])
indices_ = [2, 3, 1, 0]
store = empty(4, dtype=int).view(ndarray)
chosen = choose(indices_, choices, mode='wrap', out=store)
assert_equal(store, array([999999, 31, 12, 999999]))
def test_reshape(self):
a = arange(10)
a[0] = masked
# Try the default
b = a.reshape((5, 2))
assert_equal(b.shape, (5, 2))
self.assertTrue(b.flags['C'])
# Try w/ arguments as list instead of tuple
b = a.reshape(5, 2)
assert_equal(b.shape, (5, 2))
self.assertTrue(b.flags['C'])
# Try w/ order
b = a.reshape((5, 2), order='F')
assert_equal(b.shape, (5, 2))
self.assertTrue(b.flags['F'])
# Try w/ order
b = a.reshape(5, 2, order='F')
assert_equal(b.shape, (5, 2))
self.assertTrue(b.flags['F'])
c = np.reshape(a, (2, 5))
self.assertTrue(isinstance(c, MaskedArray))
assert_equal(c.shape, (2, 5))
self.assertTrue(c[0, 0] is masked)
self.assertTrue(c.flags['C'])
def test_make_mask_descr(self):
# Test make_mask_descr
# Flexible
ntype = [('a', np.float), ('b', np.float)]
test = make_mask_descr(ntype)
assert_equal(test, [('a', np.bool), ('b', np.bool)])
# Standard w/ shape
ntype = (np.float, 2)
test = make_mask_descr(ntype)
assert_equal(test, (np.bool, 2))
# Standard standard
ntype = np.float
test = make_mask_descr(ntype)
assert_equal(test, np.dtype(np.bool))
# Nested
ntype = [('a', np.float), ('b', [('ba', np.float), ('bb', np.float)])]
test = make_mask_descr(ntype)
control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])])
assert_equal(test, control)
# Named+ shape
ntype = [('a', (np.float, 2))]
test = make_mask_descr(ntype)
assert_equal(test, np.dtype([('a', (np.bool, 2))]))
# 2 names
ntype = [(('A', 'a'), float)]
test = make_mask_descr(ntype)
assert_equal(test, np.dtype([(('A', 'a'), bool)]))
def test_make_mask(self):
# Test make_mask
# w/ a list as an input
mask = [0, 1]
test = make_mask(mask)
assert_equal(test.dtype, MaskType)
assert_equal(test, [0, 1])
# w/ a ndarray as an input
mask = np.array([0, 1], dtype=np.bool)
test = make_mask(mask)
assert_equal(test.dtype, MaskType)
assert_equal(test, [0, 1])
# w/ a flexible-type ndarray as an input - use default
mdtype = [('a', np.bool), ('b', np.bool)]
mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
test = make_mask(mask)
assert_equal(test.dtype, MaskType)
assert_equal(test, [1, 1])
# w/ a flexible-type ndarray as an input - use input dtype
mdtype = [('a', np.bool), ('b', np.bool)]
mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
test = make_mask(mask, dtype=mask.dtype)
assert_equal(test.dtype, mdtype)
assert_equal(test, mask)
# w/ a flexible-type ndarray as an input - use input dtype
mdtype = [('a', np.float), ('b', np.float)]
bdtype = [('a', np.bool), ('b', np.bool)]
mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
test = make_mask(mask, dtype=mask.dtype)
assert_equal(test.dtype, bdtype)
assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype))
# test that nomask is returned when m is nomask.
bools = [True, False]
dtypes = [MaskType, np.float]
msgformat = 'copy=%s, shrink=%s, dtype=%s'
for cpy, shr, dt in itertools.product(bools, bools, dtypes):
res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt)
assert_(res is nomask, msgformat % (cpy, shr, dt))
def test_mask_or(self):
# Initialize
mtype = [('a', np.bool), ('b', np.bool)]
mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype)
# Test using nomask as input
test = mask_or(mask, nomask)
assert_equal(test, mask)
test = mask_or(nomask, mask)
assert_equal(test, mask)
# Using False as input
test = mask_or(mask, False)
assert_equal(test, mask)
# Using another array w / the same dtype
other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype)
test = mask_or(mask, other)
control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype)
assert_equal(test, control)
# Using another array w / a different dtype
othertype = [('A', np.bool), ('B', np.bool)]
other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype)
try:
test = mask_or(mask, other)
except ValueError:
pass
# Using nested arrays
dtype = [('a', np.bool), ('b', [('ba', np.bool), ('bb', np.bool)])]
amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype)
bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype)
cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype)
assert_equal(mask_or(amask, bmask), cntrl)
def test_flatten_mask(self):
# Tests flatten mask
# Standard dtype
mask = np.array([0, 0, 1], dtype=np.bool)
assert_equal(flatten_mask(mask), mask)
# Flexible dtype
mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
test = flatten_mask(mask)
control = np.array([0, 0, 0, 1], dtype=bool)
assert_equal(test, control)
mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
data = [(0, (0, 0)), (0, (0, 1))]
mask = np.array(data, dtype=mdtype)
test = flatten_mask(mask)
control = np.array([0, 0, 0, 0, 0, 1], dtype=bool)
assert_equal(test, control)
def test_on_ndarray(self):
# Test functions on ndarrays
a = np.array([1, 2, 3, 4])
m = array(a, mask=False)
test = anom(a)
assert_equal(test, m.anom())
test = reshape(a, (2, 2))
assert_equal(test, m.reshape(2, 2))
def test_compress(self):
# Test compress function on ndarray and masked array
# Address Github #2495.
arr = np.arange(8)
arr.shape = 4, 2
cond = np.array([True, False, True, True])
control = arr[[0, 2, 3]]
test = np.ma.compress(cond, arr, axis=0)
assert_equal(test, control)
marr = np.ma.array(arr)
test = np.ma.compress(cond, marr, axis=0)
assert_equal(test, control)
def test_compressed(self):
# Test ma.compressed function.
# Address gh-4026
a = np.ma.array([1, 2])
test = np.ma.compressed(a)
assert_(type(test) is np.ndarray)
# Test case when input data is ndarray subclass
class A(np.ndarray):
pass
a = np.ma.array(A(shape=0))
test = np.ma.compressed(a)
assert_(type(test) is A)
# Test that compress flattens
test = np.ma.compressed([[1],[2]])
assert_equal(test.ndim, 1)
test = np.ma.compressed([[[[[1]]]]])
assert_equal(test.ndim, 1)
# Test case when input is MaskedArray subclass
class M(MaskedArray):
pass
test = np.ma.compressed(M(shape=(0,1,2)))
assert_equal(test.ndim, 1)
# with .compressed() overridden
class M(MaskedArray):
def compressed(self):
return 42
test = np.ma.compressed(M(shape=(0,1,2)))
assert_equal(test, 42)
def test_convolve(self):
a = masked_equal(np.arange(5), 2)
b = np.array([1, 1])
test = np.ma.convolve(a, b)
assert_equal(test, masked_equal([0, 1, -1, -1, 7, 4], -1))
test = np.ma.convolve(a, b, propagate_mask=False)
assert_equal(test, masked_equal([0, 1, 1, 3, 7, 4], -1))
test = np.ma.convolve([1, 1], [1, 1, 1])
assert_equal(test, masked_equal([1, 2, 2, 1], -1))
a = [1, 1]
b = masked_equal([1, -1, -1, 1], -1)
test = np.ma.convolve(a, b, propagate_mask=False)
assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1))
test = np.ma.convolve(a, b, propagate_mask=True)
assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1))
class TestMaskedFields(TestCase):
def setUp(self):
ilist = [1, 2, 3, 4, 5]
flist = [1.1, 2.2, 3.3, 4.4, 5.5]
slist = ['one', 'two', 'three', 'four', 'five']
ddtype = [('a', int), ('b', float), ('c', '|S8')]
mdtype = [('a', bool), ('b', bool), ('c', bool)]
mask = [0, 1, 0, 0, 1]
base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype)
def test_set_records_masks(self):
base = self.data['base']
mdtype = self.data['mdtype']
# Set w/ nomask or masked
base.mask = nomask
assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
base.mask = masked
assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
# Set w/ simple boolean
base.mask = False
assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
base.mask = True
assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
# Set w/ list
base.mask = [0, 0, 0, 1, 1]
assert_equal_records(base._mask,
np.array([(x, x, x) for x in [0, 0, 0, 1, 1]],
dtype=mdtype))
def test_set_record_element(self):
# Check setting an element of a record)
base = self.data['base']
(base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
base[0] = (pi, pi, 'pi')
assert_equal(base_a.dtype, int)
assert_equal(base_a._data, [3, 2, 3, 4, 5])
assert_equal(base_b.dtype, float)
assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5])
assert_equal(base_c.dtype, '|S8')
assert_equal(base_c._data,
asbytes_nested(['pi', 'two', 'three', 'four', 'five']))
def test_set_record_slice(self):
base = self.data['base']
(base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
base[:3] = (pi, pi, 'pi')
assert_equal(base_a.dtype, int)
assert_equal(base_a._data, [3, 3, 3, 4, 5])
assert_equal(base_b.dtype, float)
assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5])
assert_equal(base_c.dtype, '|S8')
assert_equal(base_c._data,
asbytes_nested(['pi', 'pi', 'pi', 'four', 'five']))
def test_mask_element(self):
"Check record access"
base = self.data['base']
base[0] = masked
for n in ('a', 'b', 'c'):
assert_equal(base[n].mask, [1, 1, 0, 0, 1])
assert_equal(base[n]._data, base._data[n])
def test_getmaskarray(self):
# Test getmaskarray on flexible dtype
ndtype = [('a', int), ('b', float)]
test = empty(3, dtype=ndtype)
assert_equal(getmaskarray(test),
np.array([(0, 0), (0, 0), (0, 0)],
dtype=[('a', '|b1'), ('b', '|b1')]))
test[:] = masked
assert_equal(getmaskarray(test),
np.array([(1, 1), (1, 1), (1, 1)],
dtype=[('a', '|b1'), ('b', '|b1')]))
def test_view(self):
# Test view w/ flexible dtype
iterator = list(zip(np.arange(10), np.random.rand(10)))
data = np.array(iterator)
a = array(iterator, dtype=[('a', float), ('b', float)])
a.mask[0] = (1, 0)
controlmask = np.array([1] + 19 * [0], dtype=bool)
# Transform globally to simple dtype
test = a.view(float)
assert_equal(test, data.ravel())
assert_equal(test.mask, controlmask)
# Transform globally to dty
test = a.view((float, 2))
assert_equal(test, data)
assert_equal(test.mask, controlmask.reshape(-1, 2))
test = a.view((float, 2), np.matrix)
assert_equal(test, data)
self.assertTrue(isinstance(test, np.matrix))
def test_getitem(self):
ndtype = [('a', float), ('b', float)]
a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype)
a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0])),
dtype=[('a', bool), ('b', bool)])
# No mask
self.assertTrue(isinstance(a[1], MaskedArray))
# One element masked
self.assertTrue(isinstance(a[0], MaskedArray))
assert_equal_records(a[0]._data, a._data[0])
assert_equal_records(a[0]._mask, a._mask[0])
# All element masked
self.assertTrue(isinstance(a[-2], MaskedArray))
assert_equal_records(a[-2]._data, a._data[-2])
assert_equal_records(a[-2]._mask, a._mask[-2])
def test_setitem(self):
# Issue 4866: check that one can set individual items in [record][col]
# and [col][record] order
ndtype = np.dtype([('a', float), ('b', int)])
ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype)
ma['a'][1] = 3.0
assert_equal(ma['a'], np.array([1.0, 3.0]))
ma[1]['a'] = 4.0
assert_equal(ma['a'], np.array([1.0, 4.0]))
# Issue 2403
mdtype = np.dtype([('a', bool), ('b', bool)])
# soft mask
control = np.array([(False, True), (True, True)], dtype=mdtype)
a = np.ma.masked_all((2,), dtype=ndtype)
a['a'][0] = 2
assert_equal(a.mask, control)
a = np.ma.masked_all((2,), dtype=ndtype)
a[0]['a'] = 2
assert_equal(a.mask, control)
# hard mask
control = np.array([(True, True), (True, True)], dtype=mdtype)
a = np.ma.masked_all((2,), dtype=ndtype)
a.harden_mask()
a['a'][0] = 2
assert_equal(a.mask, control)
a = np.ma.masked_all((2,), dtype=ndtype)
a.harden_mask()
a[0]['a'] = 2
assert_equal(a.mask, control)
def test_setitem_scalar(self):
# 8510
mask_0d = np.ma.masked_array(1, mask=True)
arr = np.ma.arange(3)
arr[0] = mask_0d
assert_array_equal(arr.mask, [True, False, False])
def test_element_len(self):
# check that len() works for mvoid (Github issue #576)
for rec in self.data['base']:
assert_equal(len(rec), len(self.data['ddtype']))
class TestMaskedView(TestCase):
def setUp(self):
iterator = list(zip(np.arange(10), np.random.rand(10)))
data = np.array(iterator)
a = array(iterator, dtype=[('a', float), ('b', float)])
a.mask[0] = (1, 0)
controlmask = np.array([1] + 19 * [0], dtype=bool)
self.data = (data, a, controlmask)
def test_view_to_nothing(self):
(data, a, controlmask) = self.data
test = a.view()
self.assertTrue(isinstance(test, MaskedArray))
assert_equal(test._data, a._data)
assert_equal(test._mask, a._mask)
def test_view_to_type(self):
(data, a, controlmask) = self.data
test = a.view(np.ndarray)
self.assertTrue(not isinstance(test, MaskedArray))
assert_equal(test, a._data)
assert_equal_records(test, data.view(a.dtype).squeeze())
def test_view_to_simple_dtype(self):
(data, a, controlmask) = self.data
# View globally
test = a.view(float)
self.assertTrue(isinstance(test, MaskedArray))
assert_equal(test, data.ravel())
assert_equal(test.mask, controlmask)
def test_view_to_flexible_dtype(self):
(data, a, controlmask) = self.data
test = a.view([('A', float), ('B', float)])
assert_equal(test.mask.dtype.names, ('A', 'B'))
assert_equal(test['A'], a['a'])
assert_equal(test['B'], a['b'])
test = a[0].view([('A', float), ('B', float)])
self.assertTrue(isinstance(test, MaskedArray))
assert_equal(test.mask.dtype.names, ('A', 'B'))
assert_equal(test['A'], a['a'][0])
assert_equal(test['B'], a['b'][0])
test = a[-1].view([('A', float), ('B', float)])
self.assertTrue(isinstance(test, MaskedArray))
assert_equal(test.dtype.names, ('A', 'B'))
assert_equal(test['A'], a['a'][-1])
assert_equal(test['B'], a['b'][-1])
def test_view_to_subdtype(self):
(data, a, controlmask) = self.data
# View globally
test = a.view((float, 2))
self.assertTrue(isinstance(test, MaskedArray))
assert_equal(test, data)
assert_equal(test.mask, controlmask.reshape(-1, 2))
# View on 1 masked element
test = a[0].view((float, 2))
self.assertTrue(isinstance(test, MaskedArray))
assert_equal(test, data[0])
assert_equal(test.mask, (1, 0))
# View on 1 unmasked element
test = a[-1].view((float, 2))
self.assertTrue(isinstance(test, MaskedArray))
assert_equal(test, data[-1])
def test_view_to_dtype_and_type(self):
(data, a, controlmask) = self.data
test = a.view((float, 2), np.matrix)
assert_equal(test, data)
self.assertTrue(isinstance(test, np.matrix))
self.assertTrue(not isinstance(test, MaskedArray))
class TestOptionalArgs(TestCase):
def test_ndarrayfuncs(self):
# test axis arg behaves the same as ndarray (including mutliple axes)
d = np.arange(24.0).reshape((2,3,4))
m = np.zeros(24, dtype=bool).reshape((2,3,4))
# mask out last element of last dimension
m[:,:,-1] = True
a = np.ma.array(d, mask=m)
def testaxis(f, a, d):
numpy_f = numpy.__getattribute__(f)
ma_f = np.ma.__getattribute__(f)
# test axis arg
assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1))
assert_equal(ma_f(a, axis=(0,1))[...,:-1],
numpy_f(d[...,:-1], axis=(0,1)))
def testkeepdims(f, a, d):
numpy_f = numpy.__getattribute__(f)
ma_f = np.ma.__getattribute__(f)
# test keepdims arg
assert_equal(ma_f(a, keepdims=True).shape,
numpy_f(d, keepdims=True).shape)
assert_equal(ma_f(a, keepdims=False).shape,
numpy_f(d, keepdims=False).shape)
# test both at once
assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1],
numpy_f(d[...,:-1], axis=1, keepdims=True))
assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1],
numpy_f(d[...,:-1], axis=(0,1), keepdims=True))
for f in ['sum', 'prod', 'mean', 'var', 'std']:
testaxis(f, a, d)
testkeepdims(f, a, d)
for f in ['min', 'max']:
testaxis(f, a, d)
d = (np.arange(24).reshape((2,3,4))%2 == 0)
a = np.ma.array(d, mask=m)
for f in ['all', 'any']:
testaxis(f, a, d)
testkeepdims(f, a, d)
def test_count(self):
# test np.ma.count specially
d = np.arange(24.0).reshape((2,3,4))
m = np.zeros(24, dtype=bool).reshape((2,3,4))
m[:,0,:] = True
a = np.ma.array(d, mask=m)
assert_equal(count(a), 16)
assert_equal(count(a, axis=1), 2*ones((2,4)))
assert_equal(count(a, axis=(0,1)), 4*ones((4,)))
assert_equal(count(a, keepdims=True), 16*ones((1,1,1)))
assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4)))
assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4)))
assert_equal(count(a, axis=-2), 2*ones((2,4)))
assert_raises(ValueError, count, a, axis=(1,1))
assert_raises(ValueError, count, a, axis=3)
# check the 'nomask' path
a = np.ma.array(d, mask=nomask)
assert_equal(count(a), 24)
assert_equal(count(a, axis=1), 3*ones((2,4)))
assert_equal(count(a, axis=(0,1)), 6*ones((4,)))
assert_equal(count(a, keepdims=True), 24*ones((1,1,1)))
assert_equal(np.ndim(count(a, keepdims=True)), 3)
assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4)))
assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4)))
assert_equal(count(a, axis=-2), 3*ones((2,4)))
assert_raises(ValueError, count, a, axis=(1,1))
assert_raises(ValueError, count, a, axis=3)
# check the 'masked' singleton
assert_equal(count(np.ma.masked), 0)
# check 0-d arrays do not allow axis > 0
assert_raises(ValueError, count, np.ma.array(1), axis=1)
def test_masked_array():
a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0])
assert_equal(np.argwhere(a), [[1], [3]])
def test_append_masked_array():
a = np.ma.masked_equal([1,2,3], value=2)
b = np.ma.masked_equal([4,3,2], value=2)
result = np.ma.append(a, b)
expected_data = [1, 2, 3, 4, 3, 2]
expected_mask = [False, True, False, False, False, True]
assert_array_equal(result.data, expected_data)
assert_array_equal(result.mask, expected_mask)
a = np.ma.masked_all((2,2))
b = np.ma.ones((3,1))
result = np.ma.append(a, b)
expected_data = [1] * 3
expected_mask = [True] * 4 + [False] * 3
assert_array_equal(result.data[-3], expected_data)
assert_array_equal(result.mask, expected_mask)
result = np.ma.append(a, b, axis=None)
assert_array_equal(result.data[-3], expected_data)
assert_array_equal(result.mask, expected_mask)
def test_append_masked_array_along_axis():
a = np.ma.masked_equal([1,2,3], value=2)
b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
# When `axis` is specified, `values` must have the correct shape.
assert_raises(ValueError, np.ma.append, a, b, axis=0)
result = np.ma.append(a[np.newaxis,:], b, axis=0)
expected = np.ma.arange(1, 10)
expected[[1, 6]] = np.ma.masked
expected = expected.reshape((3,3))
assert_array_equal(result.data, expected.data)
assert_array_equal(result.mask, expected.mask)
def test_default_fill_value_complex():
# regression test for Python 3, where 'unicode' was not defined
assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j)
###############################################################################
if __name__ == "__main__":
run_module_suite()