Current File : //proc/self/root/proc/self/root/lib64/python2.7/site-packages/numpy/lib/function_base.pyc
�
E�`Qc.@s�dZddddddddd	d
ddd
ddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.g.Zd/d0lZd/d0lZd/d0lZd/d0ljjZd/d1l	m
Z
d/d2lmZmZm
Z
mZmZmZmZmZmZmZmZd/d3lmZmZmZmZmZmZmZd/d4lmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*d/d5l+m,Z,m-Z-m.Z.m/Z/m0Z0d/d6l1m2Z2m3Z3d/d7l	m4Z4m5Z5d/d8l6m7Z7d/d9l8m9Z9m:Z:d/d:l8m;Z;m<Z<m=Z>d/d;l?m@Z@d/d<lAmBZBd/d=l8mCZCd/d0lDZEd>�ZFd?d0eHd0d0d@�ZId?d0eHd0dA�ZJd0d0eHdB�ZKd0d0dC�ZLdD�ZMdEdF�ZNdGdH�ZOdI�ZPdJd/dK�ZQd0d0dL�Z=dEdM�ZRed/dN�ZSdO�ZTdPdQ�ZUd/d0lZejVdRkr�d/dSlWmXZYneBdT��ZZdU�Z[dV�Z\d0dW�Z]d0dX�Z^d0dY�Z_d0dZ�Z`d0d[�Zad0d\�Zbd0ecd]�Zddeefd^��YZfd0dJdEd0d_�Zgd0dJdEd0d`�Zhda�Zidb�Zjdc�Zkdd�Zldedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~dd�d�d�gZmd�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�gZnd��Zod��Zpd��Zqd��Zrd��Zsd��Ztd��Zud0d0eHd��Zvd0d0eHd��Zwd��Zxd0d�d/d��Zyd��Zzd��Z{d0d��Z|d0d��Z}d0d��Z~d0S(�srestructuredtext entselectt	piecewiset
trim_zerostcopytiterablet
percentiletdifftgradienttangletunwraptsort_complextdisptextracttplacetnansumtnanmaxt	nanargmaxt	nanargmintnanmint	vectorizetasarray_chkfinitetaveraget	histogramthistogramddtbincounttdigitizetcovtcorrcoeftmsorttmediantsincthammingthanningtbartletttblackmantkaiserttrapzti0t
add_newdoct
add_docstringtmeshgridtdeletetinserttappendtinterptadd_newdoc_ufunci����N(tlinspace(tonestzerostarangetconcatenatetarraytasarrayt
asanyarraytemptyt
empty_liketndarraytaround(t
ScalarTypetdottwheretnewaxistintptintegertisscalar(
tpitmultiplytaddtarctan2t
frompyfunctisnantcost
less_equaltsqrttsintmodtexptlog10(traveltnonzerotchoosetsorttmean(t	typecodestnumber(t
atleast_1dt
atleast_2d(tdiag(t_insertR'(RRR,(t	setdiff1d(t	deprecate(R-cCsyt|�WndSXdS(sd
    Check whether or not an object can be iterated over.

    Parameters
    ----------
    y : object
      Input object.

    Returns
    -------
    b : {0, 1}
      Return 1 if the object has an iterator method or is a sequence,
      and 0 otherwise.


    Examples
    --------
    >>> np.iterable([1, 2, 3])
    1
    >>> np.iterable(2)
    0

    ii(titer(ty((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR#s
i
cCs�t|�}|dk	r]t|�}tj|j|jk�rNtd��n|j�}n|j�}|dk	r�|\}}||kr�td��q�nt|�sytj	|�r�|dkr�td��n|dkr|j
dkr�d}q|j�|j�f}ng|D]}|d^q\}}||krZ|d8}|d7}nt
|||ddt�}n6t|�}tj|�dkj�r�td	��n|dkr�t}	n	|j}	tj|j|	�}
d
}|dkrhxJtdt|�|�D]T}t||||!�}
|
tj|
j|d d�|
j|dd
�f7}
q
Wn�tdd|	�}x�tdt|�|�D]�}||||!}||||!}tj|�}||}
||}tj|g|j�f�}tj|
j|d d�|
j|dd
�f}|
||7}
q�Wtj|
�}
|dk	r�|r�ttj|�t�}|
||
j�|fS|
|fSn@|r�ttj|�t�}|
|
|j�|fS|
|fSdS(s�
    Compute the histogram of a set of data.

    Parameters
    ----------
    a : array_like
        Input data. The histogram is computed over the flattened array.
    bins : int or sequence of scalars, optional
        If `bins` is an int, it defines the number of equal-width
        bins in the given range (10, by default). If `bins` is a sequence,
        it defines the bin edges, including the rightmost edge, allowing
        for non-uniform bin widths.
    range : (float, float), optional
        The lower and upper range of the bins.  If not provided, range
        is simply ``(a.min(), a.max())``.  Values outside the range are
        ignored.
    normed : bool, optional
        This keyword is deprecated in Numpy 1.6 due to confusing/buggy
        behavior. It will be removed in Numpy 2.0. Use the density keyword
        instead.
        If False, the result will contain the number of samples
        in each bin.  If True, the result is the value of the
        probability *density* function at the bin, normalized such that
        the *integral* over the range is 1. Note that this latter behavior is
        known to be buggy with unequal bin widths; use `density` instead.
    weights : array_like, optional
        An array of weights, of the same shape as `a`.  Each value in `a`
        only contributes its associated weight towards the bin count
        (instead of 1).  If `normed` is True, the weights are normalized,
        so that the integral of the density over the range remains 1
    density : bool, optional
        If False, the result will contain the number of samples
        in each bin.  If True, the result is the value of the
        probability *density* function at the bin, normalized such that
        the *integral* over the range is 1. Note that the sum of the
        histogram values will not be equal to 1 unless bins of unity
        width are chosen; it is not a probability *mass* function.
        Overrides the `normed` keyword if given.

    Returns
    -------
    hist : array
        The values of the histogram. See `normed` and `weights` for a
        description of the possible semantics.
    bin_edges : array of dtype float
        Return the bin edges ``(length(hist)+1)``.


    See Also
    --------
    histogramdd, bincount, searchsorted, digitize

    Notes
    -----
    All but the last (righthand-most) bin is half-open.  In other words, if
    `bins` is::

      [1, 2, 3, 4]

    then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the
    second ``[2, 3)``.  The last bin, however, is ``[3, 4]``, which *includes*
    4.

    Examples
    --------
    >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
    (array([0, 2, 1]), array([0, 1, 2, 3]))
    >>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
    (array([ 0.25,  0.25,  0.25,  0.25]), array([0, 1, 2, 3, 4]))
    >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
    (array([1, 4, 1]), array([0, 1, 2, 3]))

    >>> a = np.arange(5)
    >>> hist, bin_edges = np.histogram(a, density=True)
    >>> hist
    array([ 0.5,  0. ,  0.5,  0. ,  0. ,  0.5,  0. ,  0.5,  0. ,  0.5])
    >>> hist.sum()
    2.4999999999999996
    >>> np.sum(hist*np.diff(bin_edges))
    1.0

    s(weights should have the same shape as a.s/max must be larger than min in range parameter.is$`bins` should be a positive integer.igg�?tendpoints!bins must increase monotonically.ii����tlefttrighttdtypeN(ii(R4tNonetnptanytshapet
ValueErrorRNtAttributeErrorRR@tsizetmintmaxR.tTrueRtintR`R0R1tlenRQtr_tsearchsortedR3targsortR2tcumsumtfloattsum(tatbinstrangetnormedtweightstdensitytmntmxtmitntypetntblocktitsatzerottmp_attmp_wt
sorting_indextswtcwt	bin_indextdb((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR?sxT	#

		"


cCs	y|j\}}Wn5ttfk
rJt|�j}|j\}}nXt|t�}|dg}|dg}	|dk	r�t|�}ny+t	|�}
|
|kr�td��nWnt
k
r�||g}nX|dkrM|dkrt|�}t|�}q�t
t|jd�t��}t
t|jd�t��}nGt|�}t|�}x,t|�D]}
||
\||
<||
<qrWxUtt	|��D]A}
||
||
kr�||
d||
<||
d||
<q�q�Wx�t|�D]�}
t||
�rm||
dkr2td|
��n||
d||
<t||
||
||
d�||
<n/t||
t�||
<t	||
�d||
<t||
�|	|
<tjtj|	|
�dk�r�td��q�q�Wt|�}|dkrtj|d�|fSi}x;t|�D]-}
t|dd�|
f||
�||
<q'Wx�t|�D]�}
|	|
j�}tj|�sett|��d	}tt|dd�|
f|�t||
d
|�k�d}||
|cd8<qeqeWt|t�jd
�}|j�}t|t�}xCtd|d�D].}
||||
|||
dj�7}qCW|||d
7}t	|�dkr�t|dt�|fSt ||�}tt	|��}|||<|jt!|��}xVt|j"�D]E}
|j�|
}|j#|
|�}||||
||
<||<qW|t$dd
�g}||}|r�|j%�}xLt|�D]>}
t|t�}||
d||
<||	|
j|�}q�W||:}n|j|dkj�r�t&d��n||fS(sZ
    Compute the multidimensional histogram of some data.

    Parameters
    ----------
    sample : array_like
        The data to be histogrammed. It must be an (N,D) array or data
        that can be converted to such. The rows of the resulting array
        are the coordinates of points in a D dimensional polytope.
    bins : sequence or int, optional
        The bin specification:

        * A sequence of arrays describing the bin edges along each dimension.
        * The number of bins for each dimension (nx, ny, ... =bins)
        * The number of bins for all dimensions (nx=ny=...=bins).

    range : sequence, optional
        A sequence of lower and upper bin edges to be used if the edges are
        not given explicitely in `bins`. Defaults to the minimum and maximum
        values along each dimension.
    normed : bool, optional
        If False, returns the number of samples in each bin. If True, returns
        the bin density, ie, the bin count divided by the bin hypervolume.
    weights : array_like (N,), optional
        An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
        Weights are normalized to 1 if normed is True. If normed is False, the
        values of the returned histogram are equal to the sum of the weights
        belonging to the samples falling into each bin.

    Returns
    -------
    H : ndarray
        The multidimensional histogram of sample x. See normed and weights for
        the different possible semantics.
    edges : list
        A list of D arrays describing the bin edges for each dimension.

    See Also
    --------
    histogram: 1-D histogram
    histogram2d: 2-D histogram

    Examples
    --------
    >>> r = np.random.randn(100,3)
    >>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
    >>> H.shape, edges[0].size, edges[1].size, edges[2].size
    ((5, 8, 4), 6, 9, 5)

    sEThe dimension of bins must be equal to the dimension of the sample x.ig�?is;Element at index %s in `bins` should be a positive integer.isi
            Found bin edge of size <= 0. Did you specify `bins` with
            non-monotonic sequence?Nii����sInternal Shape Error('RdRfReRVtTR6RkRaR4Rlt	TypeErrorR0R/RUR3RhRqRiR1R@R.RRbRcRtisinfRMR<R9treshapeRotprodRRQRgtswapaxestsliceRrtRuntimeError(tsampleRtRuRvRwtNtDtnbintedgestdedgestMtsmintsmaxRtNcounttmindifftdecimalton_edgethisttnitxyt	flatcountRstjtcoretsRd((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s�4


!
)"+-,
!

cCs�t|tj�s$tj|�}n|d
kr^|j|�}|jj|j|j�}n|d}tj	|d|jdd�}|j
|j
kr'|d
kr�td��n|jdkr�td��n|j
d|j
|kr�t
d��ntj	|ddd	|j�jd
|�}n|jd|�}|dkj�rZtd��ntj||�j|�|}|r�tj|d�|}||fS|Sd
S(s�	
    Compute the weighted average along the specified axis.

    Parameters
    ----------
    a : array_like
        Array containing data to be averaged. If `a` is not an array, a
        conversion is attempted.
    axis : int, optional
        Axis along which to average `a`. If `None`, averaging is done over
        the flattened array.
    weights : array_like, optional
        An array of weights associated with the values in `a`. Each value in
        `a` contributes to the average according to its associated weight.
        The weights array can either be 1-D (in which case its length must be
        the size of `a` along the given axis) or of the same shape as `a`.
        If `weights=None`, then all data in `a` are assumed to have a
        weight equal to one.
    returned : bool, optional
        Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`)
        is returned, otherwise only the average is returned.
        If `weights=None`, `sum_of_weights` is equivalent to the number of
        elements over which the average is taken.


    Returns
    -------
    average, [sum_of_weights] : {array_type, double}
        Return the average along the specified axis. When returned is `True`,
        return a tuple with the average as the first element and the sum
        of the weights as the second element. The return type is `Float`
        if `a` is of integer type, otherwise it is of the same type as `a`.
        `sum_of_weights` is of the same type as `average`.

    Raises
    ------
    ZeroDivisionError
        When all weights along axis are zero. See `numpy.ma.average` for a
        version robust to this type of error.
    TypeError
        When the length of 1D `weights` is not the same as the shape of `a`
        along axis.

    See Also
    --------
    mean

    ma.average : average for masked arrays -- useful if your data contains
                 "missing" values

    Examples
    --------
    >>> data = range(1,5)
    >>> data
    [1, 2, 3, 4]
    >>> np.average(data)
    2.5
    >>> np.average(range(1,11), weights=range(10,0,-1))
    4.0

    >>> data = np.arange(6).reshape((3,2))
    >>> data
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> np.average(data, axis=1, weights=[1./4, 3./4])
    array([ 0.75,  2.75,  4.75])
    >>> np.average(data, weights=[1./4, 3./4])
    Traceback (most recent call last):
    ...
    TypeError: Axis must be specified when shapes of a and weights differ.

    gR`Ris;Axis must be specified when shapes of a and weights differ.is81D weights expected when shapes of a and weights differ.s5Length of weights not compatible with specified axis.tndmini����taxiss(Weights sum to zero, can't be normalizedN(t
isinstanceRbtmatrixR4RaRRR`ttypeRgR3RdR�tndimReR�RrRctZeroDivisionErrorRB(RsR�Rwtreturnedtavgtscltwgt((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s6J
-
cCsWt|d|d|�}|jjtdkrStj|�j�rStd��n|S(sF
    Convert the input to an array, checking for NaNs or Infs.

    Parameters
    ----------
    a : array_like
        Input data, in any form that can be converted to an array.  This
        includes lists, lists of tuples, tuples, tuples of tuples, tuples
        of lists and ndarrays.  Success requires no NaNs or Infs.
    dtype : data-type, optional
        By default, the data-type is inferred from the input data.
    order : {'C', 'F'}, optional
        Whether to use row-major ('C') or column-major ('FORTRAN') memory
        representation.  Defaults to 'C'.

    Returns
    -------
    out : ndarray
        Array interpretation of `a`.  No copy is performed if the input
        is already an ndarray.  If `a` is a subclass of ndarray, a base
        class ndarray is returned.

    Raises
    ------
    ValueError
        Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity).

    See Also
    --------
    asarray : Create and array.
    asanyarray : Similar function which passes through subclasses.
    ascontiguousarray : Convert input to a contiguous array.
    asfarray : Convert input to a floating point ndarray.
    asfortranarray : Convert input to an ndarray with column-major
                     memory order.
    fromiter : Create an array from an iterator.
    fromfunction : Construct an array by executing a function on grid
                   positions.

    Examples
    --------
    Convert a list into an array.  If all elements are finite
    ``asarray_chkfinite`` is identical to ``asarray``.

    >>> a = [1, 2]
    >>> np.asarray_chkfinite(a, dtype=float)
    array([1., 2.])

    Raises ValueError if array_like contains Nans or Infs.

    >>> a = [1, 2, np.inf]
    >>> try:
    ...     np.asarray_chkfinite(a)
    ... except ValueError:
    ...     print 'ValueError'
    ...
    ValueError

    R`tordertAllFloats#array must not contain infs or NaNs(R4R`tcharRSRbtisfinitetallRe(RsR`R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyRs
<,cOs,t|�}t|�}t|�sKt|dt�pGt|dt�rW|g}ng|D]}t|dt�^q^}t|�}||dkr�|d}x%td|�D]}	|||	O}q�W|j	|�|d7}n||krt
d��nt}
|jdkr�|d}t}
g}xOt|�D]A}	||	jdkrb||	d}n
||	}|j	|�q8W|}nt|j|j�}
xut|�D]g}	||	}t|�s�||
||	<q�|||	}|jdkr�||||�|
||	<q�q�W|
r(|
j�}
n|
S(sG
    Evaluate a piecewise-defined function.

    Given a set of conditions and corresponding functions, evaluate each
    function on the input data wherever its condition is true.

    Parameters
    ----------
    x : ndarray
        The input domain.
    condlist : list of bool arrays
        Each boolean array corresponds to a function in `funclist`.  Wherever
        `condlist[i]` is True, `funclist[i](x)` is used as the output value.

        Each boolean array in `condlist` selects a piece of `x`,
        and should therefore be of the same shape as `x`.

        The length of `condlist` must correspond to that of `funclist`.
        If one extra function is given, i.e. if
        ``len(funclist) - len(condlist) == 1``, then that extra function
        is the default value, used wherever all conditions are false.
    funclist : list of callables, f(x,*args,**kw), or scalars
        Each function is evaluated over `x` wherever its corresponding
        condition is True.  It should take an array as input and give an array
        or a scalar value as output.  If, instead of a callable,
        a scalar is provided then a constant function (``lambda x: scalar``) is
        assumed.
    args : tuple, optional
        Any further arguments given to `piecewise` are passed to the functions
        upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then
        each function is called as ``f(x, 1, 'a')``.
    kw : dict, optional
        Keyword arguments used in calling `piecewise` are passed to the
        functions upon execution, i.e., if called
        ``piecewise(..., ..., lambda=1)``, then each function is called as
        ``f(x, lambda=1)``.

    Returns
    -------
    out : ndarray
        The output is the same shape and type as x and is found by
        calling the functions in `funclist` on the appropriate portions of `x`,
        as defined by the boolean arrays in `condlist`.  Portions not covered
        by any condition have undefined values.


    See Also
    --------
    choose, select, where

    Notes
    -----
    This is similar to choose or select, except that functions are
    evaluated on elements of `x` that satisfy the corresponding condition from
    `condlist`.

    The result is::

            |--
            |funclist[0](x[condlist[0]])
      out = |funclist[1](x[condlist[1]])
            |...
            |funclist[n2](x[condlist[n2]])
            |--

    Examples
    --------
    Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``.

    >>> x = np.arange(6) - 2.5
    >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1])
    array([-1., -1., -1.,  1.,  1.,  1.])

    Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for
    ``x >= 0``.

    >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
    array([ 2.5,  1.5,  0.5,  0.5,  1.5,  2.5])

    iR`is1function list and condition list must be the sameN(R5RlR@R�tlistR8R4tboolRuR+RetFalseR�RaRjR0RdR`tcallableRgtsqueeze(txtcondlisttfunclisttargstkwtn2tcR}ttotlisttktzerodtnewcondlistt	conditionR\titemtvals((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyRQsNQ%



	
!icCs�t|�}t|�}||kr3td��n|g|}d}d}xftd|d�D]Q}|||t||d�7}||kr`|dt||d�9}q`q`Wt|�tks�tt|�j�dkrvtd�}x,t|d�D]}|t||�}q�Wt|�tkrT|tt|�jt|��}qv|tt|�j|j	�}nt
|t|��S(s�
    Return an array drawn from elements in choicelist, depending on conditions.

    Parameters
    ----------
    condlist : list of bool ndarrays
        The list of conditions which determine from which array in `choicelist`
        the output elements are taken. When multiple conditions are satisfied,
        the first one encountered in `condlist` is used.
    choicelist : list of ndarrays
        The list of arrays from which the output elements are taken. It has
        to be of the same length as `condlist`.
    default : scalar, optional
        The element inserted in `output` when all conditions evaluate to False.

    Returns
    -------
    output : ndarray
        The output at position m is the m-th element of the array in
        `choicelist` where the m-th element of the corresponding array in
        `condlist` is True.

    See Also
    --------
    where : Return elements from one of two arrays depending on condition.
    take, choose, compress, diag, diagonal

    Examples
    --------
    >>> x = np.arange(10)
    >>> condlist = [x<3, x>5]
    >>> choicelist = [x, x**2]
    >>> np.select(condlist, choicelist)
    array([ 0,  1,  2,  0,  0,  0, 36, 49, 64, 81])

    s7list of cases must be same length as list of conditionsii(RlReRuR4R�R:RiRdR/R`RPttuple(R�t
choicelisttdefaultR}R�tStpfacR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s(%
 #-%"tKcCst|d|dt�S(s
    Return an array copy of the given object.

    Parameters
    ----------
    a : array_like
        Input data.
    order : {'C', 'F', 'A', 'K'}, optional
        Controls the memory layout of the copy. 'C' means C-order,
        'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
        'C' otherwise. 'K' means match the layout of `a` as closely
        as possible. (Note that this function and :meth:ndarray.copy are very
        similar, but have different default values for their order=
        arguments.)

    Returns
    -------
    arr : ndarray
        Array interpretation of `a`.

    Notes
    -----
    This is equivalent to

    >>> np.array(a, copy=True)                              #doctest: +SKIP

    Examples
    --------
    Create an array x, with a reference y and a copy z:

    >>> x = np.array([1, 2, 3])
    >>> y = x
    >>> z = np.copy(x)

    Note that, when we modify x, y changes, but not z:

    >>> x[0] = 10
    >>> x[0] == y[0]
    True
    >>> x[0] == z[0]
    False

    R�R(R3Rj(RsR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR
s,cGsttj|�}t|j�}t|�}|dkrFdg|}nG|dkrf|dg|}n'||kr�t|�}ntd��g}td�g|}td�g|}td�g|}|jj	}	|	dkr�d}	n|	d
kr|jj
jdd�}	n|	d	kr,|j}	nx)t|�D]}
tj
|d
|	�}tdd�||
<tdd�||
<tdd�||
<||||d||<d||
<d||
<d||
<||||||<d||
<d||
<d||
<||||||<|j|||
�td�||
<td�||
<td�||
<q9W|dkrl|dS|SdS(s]
    Return the gradient of an N-dimensional array.

    The gradient is computed using central differences in the interior
    and first differences at the boundaries. The returned gradient hence has
    the same shape as the input array.

    Parameters
    ----------
    f : array_like
      An N-dimensional array containing samples of a scalar function.
    `*varargs` : scalars
      0, 1, or N scalars specifying the sample distances in each direction,
      that is: `dx`, `dy`, `dz`, ... The default distance is 1.


    Returns
    -------
    gradient : ndarray
      N arrays of the same shape as `f` giving the derivative of `f` with
      respect to each dimension.

    Examples
    --------
    >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
    >>> np.gradient(x)
    array([ 1. ,  1.5,  2.5,  3.5,  4.5,  5. ])
    >>> np.gradient(x, 2)
    array([ 0.5 ,  0.75,  1.25,  1.75,  2.25,  2.5 ])

    >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float))
    [array([[ 2.,  2., -1.],
           [ 2.,  2., -1.]]),
    array([[ 1. ,  2.5,  4. ],
           [ 1. ,  1. ,  1. ]])]

    ig�?isinvalid number of argumentstftdtFR�tmR�tdatetimet	timedeltaR`i����ii����g@N(R�R�R�R�R�R�(RbR5RlRdR�tSyntaxErrorR�RaR`R�tnametreplaceRuR7R+(R�tvarargsR�R}tdxtoutvalstslice1tslice2tslice3totypeR�tout((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR=sV&		





icCs�|dkr|S|dkr5tdt|���nt|�}t|j�}td�g|}td�g|}tdd�||<tdd�||<t|�}t|�}|dkr�t|||||dd|�S||||SdS(s+
    Calculate the n-th order discrete difference along given axis.

    The first order difference is given by ``out[n] = a[n+1] - a[n]`` along
    the given axis, higher order differences are calculated by using `diff`
    recursively.

    Parameters
    ----------
    a : array_like
        Input array
    n : int, optional
        The number of times values are differenced.
    axis : int, optional
        The axis along which the difference is taken, default is the last axis.

    Returns
    -------
    diff : ndarray
        The `n` order differences. The shape of the output is the same as `a`
        except along `axis` where the dimension is smaller by `n`.

    See Also
    --------
    gradient, ediff1d

    Examples
    --------
    >>> x = np.array([1, 2, 4, 7, 0])
    >>> np.diff(x)
    array([ 1,  2,  3, -7])
    >>> np.diff(x, n=2)
    array([  1,   1, -10])

    >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
    >>> np.diff(x)
    array([[2, 3, 4],
           [5, 1, 2]])
    >>> np.diff(x, axis=0)
    array([[-1,  2,  0, -2]])

    is#order must be non-negative but got ii����R�N(	RetreprR5RlRdR�RaR�R(RsR}R�tndR�R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s +#cCs�t|tttf�r7t|g||||�j�St|tj�rw|jdkrwt|g||||�j�St|||||�SdS(s�
    One-dimensional linear interpolation.

    Returns the one-dimensional piecewise linear interpolant to a function
    with given values at discrete data-points.

    Parameters
    ----------
    x : array_like
        The x-coordinates of the interpolated values.

    xp : 1-D sequence of floats
        The x-coordinates of the data points, must be increasing.

    fp : 1-D sequence of floats
        The y-coordinates of the data points, same length as `xp`.

    left : float, optional
        Value to return for `x < xp[0]`, default is `fp[0]`.

    right : float, optional
        Value to return for `x > xp[-1]`, defaults is `fp[-1]`.

    Returns
    -------
    y : {float, ndarray}
        The interpolated values, same shape as `x`.

    Raises
    ------
    ValueError
        If `xp` and `fp` have different length

    Notes
    -----
    Does not check that the x-coordinate sequence `xp` is increasing.
    If `xp` is not increasing, the results are nonsense.
    A simple check for increasingness is::

        np.all(np.diff(xp) > 0)


    Examples
    --------
    >>> xp = [1, 2, 3]
    >>> fp = [3, 2, 0]
    >>> np.interp(2.5, xp, fp)
    1.0
    >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
    array([ 3. ,  3. ,  2.5 ,  0.56,  0. ])
    >>> UNDEF = -99.0
    >>> np.interp(3.14, xp, fp, right=UNDEF)
    -99.0

    Plot an interpolant to the sine function:

    >>> x = np.linspace(0, 2*np.pi, 10)
    >>> y = np.sin(x)
    >>> xvals = np.linspace(0, 2*np.pi, 50)
    >>> yinterp = np.interp(xvals, x, y)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x, y, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.plot(xvals, yinterp, '-x')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.show()

    iN(	R�RqRkRTtcompiled_interpR�RbR8R�(R�txptfpR^R_((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR,�s
E!cCso|rdt}nd}t|�}t|jjtj�rR|j}|j}nd}|}t	||�|S(s�
    Return the angle of the complex argument.

    Parameters
    ----------
    z : array_like
        A complex number or sequence of complex numbers.
    deg : bool, optional
        Return angle in degrees if True, radians if False (default).

    Returns
    -------
    angle : {ndarray, scalar}
        The counterclockwise angle from the positive real axis on
        the complex plane, with dtype as numpy.float64.

    See Also
    --------
    arctan2
    absolute



    Examples
    --------
    >>> np.angle([1.0, 1.0j, 1+1j])               # in radians
    array([ 0.        ,  1.57079633,  0.78539816])
    >>> np.angle(1+1j, deg=True)                  # in degrees
    45.0

    i�g�?i(
RAR4t
issubclassR`R�t_nxtcomplexfloatingtimagtrealRD(tztdegtfacttzimagtzreal((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR0s 
	c	Cs�t|�}t|j�}t|d|�}td	d	�g|}tdd	�||<t|tdt�t}tj	|td|tk|dk@�||}tj	|ddt
|�|k�t|dtdd�}|||j
|�||<|S(
s8
    Unwrap by changing deltas between values to 2*pi complement.

    Unwrap radian phase `p` by changing absolute jumps greater than
    `discont` to their 2*pi complement along the given axis.

    Parameters
    ----------
    p : array_like
        Input array.
    discont : float, optional
        Maximum discontinuity between values, default is ``pi``.
    axis : int, optional
        Axis along which unwrap will operate, default is the last axis.

    Returns
    -------
    out : ndarray
        Output array.

    See Also
    --------
    rad2deg, deg2rad

    Notes
    -----
    If the discontinuity in `p` is smaller than ``pi``, but larger than
    `discont`, no unwrapping is done because taking the 2*pi complement
    would only make the discontinuity larger.

    Examples
    --------
    >>> phase = np.linspace(0, np.pi, num=5)
    >>> phase[3:] += np.pi
    >>> phase
    array([ 0.        ,  0.78539816,  1.57079633,  5.49778714,  6.28318531])
    >>> np.unwrap(phase)
    array([ 0.        ,  0.78539816,  1.57079633, -0.78539816,  0.        ])

    R�iiR<iRR`R�N(R4RlRdRR�RaRKRAR�tcopytotabsR3RjRp(	tptdiscontR�R�tddR�tddmodt
ph_correcttup((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR	]s)'
"cCs�t|dt�}|j�t|jjtj�s�|jjdkrS|j	d�S|jjdkrr|j	d�S|j	d�Sn|SdS(s�
    Sort a complex array using the real part first, then the imaginary part.

    Parameters
    ----------
    a : array_like
        Input array

    Returns
    -------
    out : complex ndarray
        Always returns a sorted complex array.

    Examples
    --------
    >>> np.sort_complex([5, 3, 6, 2, 1])
    array([ 1.+0.j,  2.+0.j,  3.+0.j,  5.+0.j,  6.+0.j])

    >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
    array([ 1.+2.j,  2.-1.j,  3.-3.j,  3.-2.j,  3.+5.j])

    RtbhBHR�tgtGR�N(
R3RjRQR�R`R�R�R�R�tastype(Rstb((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR
�s


tfbcCs�d}|j�}d|krLx+|D] }|dkr;Pq%|d}q%Wnt|�}d|kr�x8|ddd�D] }|dkr�Pqx|d}qxWn|||!S(s3
    Trim the leading and/or trailing zeros from a 1-D array or sequence.

    Parameters
    ----------
    filt : 1-D array or sequence
        Input array.
    trim : str, optional
        A string with 'f' representing trim from front and 'b' to trim from
        back. Default is 'fb', trim zeros from both front and back of the
        array.

    Returns
    -------
    trimmed : 1-D array or sequence
        The result of trimming the input. The input data type is preserved.

    Examples
    --------
    >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
    >>> np.trim_zeros(a)
    array([1, 2, 3, 0, 2, 1])

    >>> np.trim_zeros(a, 'b')
    array([0, 0, 0, 1, 2, 3, 0, 2, 1])

    The input data type is preserved, list/tuple in means list/tuple out.

    >>> np.trim_zeros([0, 1, 2, 0])
    [1, 2]

    iR�gitBNi����(tupperRl(tfiltttrimtfirstRtlast((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s!
i(tSetcCs�yX|j�}|jdkr"|S|j�ttg|d|d kf�}||SWn4tk
r�tt|��}|j�t|�SXdS(sW
    This function is deprecated.  Use numpy.lib.arraysetops.unique()
    instead.
    iii����N(	tflattenRgRQR2RjRfR�tsetR4(R�ttmptidxtitems((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pytunique�s
#

cCs&tjt|�tt|��d�S(sp
    Return the elements of an array that satisfy some condition.

    This is equivalent to ``np.compress(ravel(condition), ravel(arr))``.  If
    `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``.

    Parameters
    ----------
    condition : array_like
        An array whose nonzero or True entries indicate the elements of `arr`
        to extract.
    arr : array_like
        Input array of the same size as `condition`.

    Returns
    -------
    extract : ndarray
        Rank 1 array of values from `arr` where `condition` is True.

    See Also
    --------
    take, put, copyto, compress

    Examples
    --------
    >>> arr = np.arange(12).reshape((3, 4))
    >>> arr
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
    >>> condition = np.mod(arr, 3)==0
    >>> condition
    array([[ True, False, False,  True],
           [False, False,  True, False],
           [False,  True, False, False]], dtype=bool)
    >>> np.extract(condition, arr)
    array([0, 3, 6, 9])


    If `condition` is boolean:

    >>> arr[condition]
    array([0, 3, 6, 9])

    i(R�ttakeRNRO(R�tarr((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s.cCst|||�S(s�
    Change elements of an array based on conditional and input values.

    Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
    `place` uses the first N elements of `vals`, where N is the number of
    True values in `mask`, while `copyto` uses the elements where `mask`
    is True.

    Note that `extract` does the exact opposite of `place`.

    Parameters
    ----------
    arr : array_like
        Array to put data into.
    mask : array_like
        Boolean mask array. Must have the same size as `a`.
    vals : 1-D sequence
        Values to put into `a`. Only the first N elements are used, where
        N is the number of True values in `mask`. If `vals` is smaller
        than N it will be repeated.

    See Also
    --------
    copyto, put, take, extract

    Examples
    --------
    >>> arr = np.arange(6).reshape(2, 3)
    >>> np.place(arr, arr>2, [44, 55])
    >>> arr
    array([[ 0,  1,  2],
           [44, 55, 44]])

    (RX(R
tmaskR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR
*s#c	Cs�t|dt�}|j}tj|tj�sEtj|tj�rU||d|�St|�}tj||d|�||d|�}|j	d|�}|j
�r�tj|�r�tj}q�tj||<n|S(s�
    General operation on arrays with not-a-number values.

    Parameters
    ----------
    op : callable
        Operation to perform.
    fill : float
        NaN values are set to fill before doing the operation.
    a : array-like
        Input array.
    axis : {int, None}, optional
        Axis along which the operation is computed.
        By default the input is flattened.

    Returns
    -------
    y : {ndarray, scalar}
        Processed data.

    tsubokR�R<(
R3RjR`Rbt
issubdtypeR?tbool_RFR�R�RcR@tnan(	toptfillRsR�R\tdtRtrestmask_all_along_axis((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt_nanopOs	*cCsttjd||�S(s�
    Return the sum of array elements over a given axis treating
    Not a Numbers (NaNs) as zero.

    Parameters
    ----------
    a : array_like
        Array containing numbers whose sum is desired. If `a` is not an
        array, a conversion is attempted.
    axis : int, optional
        Axis along which the sum is computed. The default is to compute
        the sum of the flattened array.

    Returns
    -------
    y : ndarray
        An array with the same shape as a, with the specified axis removed.
        If a is a 0-d array, or if axis is None, a scalar is returned with
        the same dtype as `a`.

    See Also
    --------
    numpy.sum : Sum across array including Not a Numbers.
    isnan : Shows which elements are Not a Number (NaN).
    isfinite: Shows which elements are not: Not a Number, positive and
             negative infinity

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.
    If positive or negative infinity are present the result is positive or
    negative infinity. But if both positive and negative infinity are present,
    the result is Not A Number (NaN).

    Arithmetic is modular when using integer types (all elements of `a` must
    be finite i.e. no elements that are NaNs, positive infinity and negative
    infinity because NaNs are floating point types), and no error is raised
    on overflow.


    Examples
    --------
    >>> np.nansum(1)
    1
    >>> np.nansum([1])
    1
    >>> np.nansum([1, np.nan])
    1.0
    >>> a = np.array([[1, 1], [1, np.nan]])
    >>> np.nansum(a)
    3.0
    >>> np.nansum(a, axis=0)
    array([ 2.,  1.])

    When positive infinity and negative infinity are present

    >>> np.nansum([1, np.nan, np.inf])
    inf
    >>> np.nansum([1, np.nan, np.NINF])
    -inf
    >>> np.nansum([1, np.nan, np.inf, np.NINF])
    nan

    i(RRbRr(RsR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR~sBcCsEtj|�}|dk	r.tjj||�Stjj|j�SdS(s�
    Return the minimum of an array or minimum along an axis ignoring any NaNs.

    Parameters
    ----------
    a : array_like
        Array containing numbers whose minimum is desired.
    axis : int, optional
        Axis along which the minimum is computed.The default is to compute
        the minimum of the flattened array.

    Returns
    -------
    nanmin : ndarray
        A new array or a scalar array with the result.

    See Also
    --------
    numpy.amin : Minimum across array including any Not a Numbers.
    numpy.nanmax : Maximum across array ignoring any Not a Numbers.
    isnan : Shows which elements are Not a Number (NaN).
    isfinite: Shows which elements are not: Not a Number, positive and
             negative infinity

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.
    Positive infinity is treated as a very large number and negative infinity
    is treated as a very small (i.e. negative) number.

    If the input has a integer type the function is equivalent to np.min.


    Examples
    --------
    >>> a = np.array([[1, 2], [3, np.nan]])
    >>> np.nanmin(a)
    1.0
    >>> np.nanmin(a, axis=0)
    array([ 1.,  2.])
    >>> np.nanmin(a, axis=1)
    array([ 1.,  3.])

    When positive infinity and negative infinity are present:

    >>> np.nanmin([1, 2, np.nan, np.inf])
    1.0
    >>> np.nanmin([1, 2, np.nan, np.NINF])
    -inf

    N(RbR5Ratfmintreducetflat(RsR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s5cCsttjtj||�S(sr
    Return indices of the minimum values over an axis, ignoring NaNs.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which to operate.  By default flattened input is used.

    Returns
    -------
    index_array : ndarray
        An array of indices or a single index value.

    See Also
    --------
    argmin, nanargmax

    Examples
    --------
    >>> a = np.array([[np.nan, 4], [2, 3]])
    >>> np.argmin(a)
    0
    >>> np.nanargmin(a)
    2
    >>> np.nanargmin(a, axis=0)
    array([1, 1])
    >>> np.nanargmin(a, axis=1)
    array([1, 0])

    (RRbtargmintinf(RsR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s!cCsEtj|�}|dk	r.tjj||�Stjj|j�SdS(s�
    Return the maximum of an array or maximum along an axis ignoring any NaNs.

    Parameters
    ----------
    a : array_like
        Array containing numbers whose maximum is desired. If `a` is not
        an array, a conversion is attempted.
    axis : int, optional
        Axis along which the maximum is computed. The default is to compute
        the maximum of the flattened array.

    Returns
    -------
    nanmax : ndarray
        An array with the same shape as `a`, with the specified axis removed.
        If `a` is a 0-d array, or if axis is None, a ndarray scalar is
        returned.  The the same dtype as `a` is returned.

    See Also
    --------
    numpy.amax : Maximum across array including any Not a Numbers.
    numpy.nanmin : Minimum across array ignoring any Not a Numbers.
    isnan : Shows which elements are Not a Number (NaN).
    isfinite: Shows which elements are not: Not a Number, positive and
             negative infinity

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.
    Positive infinity is treated as a very large number and negative infinity
    is treated as a very small (i.e. negative) number.

    If the input has a integer type the function is equivalent to np.max.

    Examples
    --------
    >>> a = np.array([[1, 2], [3, np.nan]])
    >>> np.nanmax(a)
    3.0
    >>> np.nanmax(a, axis=0)
    array([ 3.,  2.])
    >>> np.nanmax(a, axis=1)
    array([ 2.,  3.])

    When positive infinity and negative infinity are present:

    >>> np.nanmax([1, 2, np.nan, np.NINF])
    2.0
    >>> np.nanmax([1, 2, np.nan, np.inf])
    inf

    N(RbR5RatfmaxRR(RsR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR s7cCsttjtj||�S(sr
    Return indices of the maximum values over an axis, ignoring NaNs.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which to operate.  By default flattened input is used.

    Returns
    -------
    index_array : ndarray
        An array of indices or a single index value.

    See Also
    --------
    argmax, nanargmin

    Examples
    --------
    >>> a = np.array([[np.nan, 4], [2, 3]])
    >>> np.argmax(a)
    0
    >>> np.nanargmax(a)
    1
    >>> np.nanargmax(a, axis=0)
    array([1, 0])
    >>> np.nanargmax(a, axis=1)
    array([1, 1])

    (RRbtargmaxR(RsR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR]s!cCs]|dkr$ddl}|j}n|r>|jd|�n|jd|�|j�dS(s7
    Display a message on a device.

    Parameters
    ----------
    mesg : str
        Message to display.
    device : object
        Device to write message. If None, defaults to ``sys.stdout`` which is
        very similar to ``print``. `device` needs to have ``write()`` and
        ``flush()`` methods.
    linefeed : bool, optional
        Option whether to print a line feed or not. Defaults to True.

    Raises
    ------
    AttributeError
        If `device` does not have a ``write()`` or ``flush()`` method.

    Examples
    --------
    Besides ``sys.stdout``, a file-like object can also be used as it has
    both required methods:

    >>> from StringIO import StringIO
    >>> buf = StringIO()
    >>> np.disp('"Display" in a file', device=buf)
    >>> buf.getvalue()
    '"Display" in a file\n'

    i����Ns%s
s%s(Ratsyststdouttwritetflush(tmesgtdevicetlinefeedR((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s 
cBs>eZdZddded�Zd�Zd�Zd�ZRS(s+
    vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False)

    Generalized function class.

    Define a vectorized function which takes a nested sequence
    of objects or numpy arrays as inputs and returns a
    numpy array as output. The vectorized function evaluates `pyfunc` over
    successive tuples of the input arrays like the python map function,
    except it uses the broadcasting rules of numpy.

    The data type of the output of `vectorized` is determined by calling
    the function with the first element of the input.  This can be avoided
    by specifying the `otypes` argument.

    Parameters
    ----------
    pyfunc : callable
        A python function or method.
    otypes : str or list of dtypes, optional
        The output data type. It must be specified as either a string of
        typecode characters or a list of data type specifiers. There should
        be one data type specifier for each output.
    doc : str, optional
        The docstring for the function. If `None`, the docstring will be the
        ``pyfunc.__doc__``.
    excluded : set, optional
        Set of strings or integers representing the positional or keyword
        arguments for which the function will not be vectorized.  These will be
        passed directly to `pyfunc` unmodified.
        
        .. versionadded:: 1.7.0
    
    cache : bool, optional
       If `True`, then cache the first function call that determines the number
       of outputs if `otypes` is not provided.

        .. versionadded:: 1.7.0

    Returns
    -------
    vectorized : callable
        Vectorized function.

    Examples
    --------
    >>> def myfunc(a, b):
    ...     "Return a-b if a>b, otherwise return a+b"
    ...     if a > b:
    ...         return a - b
    ...     else:
    ...         return a + b

    >>> vfunc = np.vectorize(myfunc)
    >>> vfunc([1, 2, 3, 4], 2)
    array([3, 4, 1, 2])

    The docstring is taken from the input function to `vectorize` unless it
    is specified

    >>> vfunc.__doc__
    'Return a-b if a>b, otherwise return a+b'
    >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`')
    >>> vfunc.__doc__
    'Vectorized `myfunc`'

    The output type is determined by evaluating the first element of the input,
    unless it is specified

    >>> out = vfunc([1, 2, 3, 4], 2)
    >>> type(out[0])
    <type 'numpy.int32'>
    >>> vfunc = np.vectorize(myfunc, otypes=[np.float])
    >>> out = vfunc([1, 2, 3, 4], 2)
    >>> type(out[0])
    <type 'numpy.float64'>

    The `excluded` argument can be used to prevent vectorizing over certain
    arguments.  This can be useful for array-like arguments of a fixed length
    such as the coefficients for a polynomial as in `polyval`:

    >>> def mypolyval(p, x):
    ...     _p = list(p)
    ...     res = _p.pop(0)
    ...     while _p:
    ...         res = res*x + _p.pop(0)
    ...     return res
    >>> vpolyval = np.vectorize(mypolyval, excluded=['p'])
    >>> vpolyval(p=[1, 2, 3], x=[0, 1])
    array([3, 6])

    Positional arguments may also be excluded by specifying their position:

    >>> vpolyval.excluded.add(0)
    >>> vpolyval([1, 2, 3], x=[0, 1])
    array([3, 6])

    Notes
    -----
    The `vectorize` function is provided primarily for convenience, not for
    performance. The implementation is essentially a for loop.

    If `otypes` is not specified, then a call to the function with the first
    argument will be used to determine the number of outputs.  The results of
    this call will be cached if `cache` is `True` to prevent calling the
    function twice.  However, to implement the cache, the original function must
    be wrapped which will slow down subsequent calls, so only do this if your
    function is expensive.

    The new keyword argument interface and `excluded` argument support further
    degrades performance.
    tcCs!||_||_|dkr-|j|_n	||_t|t�r�||_x�|jD],}|tdkrXtd|f��qXqXWnLt	|�r�dj
g|D]}tj|�j
^q��|_ntd��|dkr�t�}nt|�|_|jr|jrd|_ndS(NtAllsInvalid otype specified: %sR$sInvalid otype specification(tpyfunctcacheRat__doc__R�tstrtotypesRSReRtjoinR�R`R�Rtexcludedt_ufunc(tselfR&R*tdocR,R'R�R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt__init__s$				4c	s�j}�r)|r)�j}|}n�t|�}g�D]}||kr<|^q<�gt|�D]}||krg|^qg�t|�������fd�}g�D]}||^q�}|jg�D]}�|^q���jd|d|�S(s�
        Return arrays with the results of `pyfunc` broadcast (vectorized) over
        `args` and `kwargs` not in `excluded`.
        cs[x(t��D]\}}||�|<q
W�jt�|t�����j���S(N(t	enumeratetupdatetzipRlR&(tvargst_nt_i(tindstkwargstnamesR.tthe_args(s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pytfuncHs R;R�(R,R&RlRuR�textendt_vectorize_call(	R.R�R8R,R;R4tnargsR5R6((R7R8R9R.R:s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt__call__6s			%+$cs\|st�|jrv|j}t|�}�|jkrT|jdk	rT|j}qRt�t|�|�}|_n�g|D]}t|�jd^q}}�|�}|j	r�|g���fd�}	n�}	t
|t�r�t|�}nd}|f}djgt
|�D]}
t||
�jj^q�}t|	t|�|�}||fS(sReturn (ufunc, otypes).ics�r�j�S�|�SdS(N(tpop(R4(t_cacheR;(s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt_funcps
iR$N(tAssertionErrorR*RlR&R-RaRER4RR'R�R�R+RuR`R�(R.R;R�R*tnouttufunct_atinputstoutputsRBt_k((RAR;s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt_get_ufunc_and_otypesSs*		"&				/cCs�|s|�}n�|jd|d|�\}}g|D]$}t|dtdtdt�^q7}||�}|jdkr�t|dtdtd|d�}nFtgt||�D]*\}	}
t|	dtdtd|
�^q��}|S(s1Vectorized call to `func` over positional `args`.R;R�RRR`ii(RJR3R�RjtobjectRDR�R3(R.R;R�t_resRER*RFRGRHt_xt_t((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR=�s.	@N(	t__name__t
__module__R(RaR�R0R?RJR=(((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s
p		5c
	Cs�|d	k	r-|t|�kr-td��nt|dddt�}|jdkratj|�S|jddkr}d}n|r�d}td	�t	f}nd}t	td	�f}|d	k	r�t|dt
dddt�}t||f|�}n||jdd|�|8}|r,|jd}n
|jd}|d	krc|dkrZd}qcd}nt||�}	|s�t
|j|j��|	j�St
||jj��|	j�Sd	S(
sm

    Estimate a covariance matrix, given data.

    Covariance indicates the level to which two variables vary together.
    If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`,
    then the covariance matrix element :math:`C_{ij}` is the covariance of
    :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance
    of :math:`x_i`.

    Parameters
    ----------
    m : array_like
        A 1-D or 2-D array containing multiple variables and observations.
        Each row of `m` represents a variable, and each column a single
        observation of all those variables. Also see `rowvar` below.
    y : array_like, optional
        An additional set of variables and observations. `y` has the same
        form as that of `m`.
    rowvar : int, optional
        If `rowvar` is non-zero (default), then each row represents a
        variable, with observations in the columns. Otherwise, the relationship
        is transposed: each column represents a variable, while the rows
        contain observations.
    bias : int, optional
        Default normalization is by ``(N - 1)``, where ``N`` is the number of
        observations given (unbiased estimate). If `bias` is 1, then
        normalization is by ``N``. These values can be overridden by using
        the keyword ``ddof`` in numpy versions >= 1.5.
    ddof : int, optional
        .. versionadded:: 1.5
        If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
        the number of observations; this overrides the value implied by
        ``bias``. The default value is ``None``.

    Returns
    -------
    out : ndarray
        The covariance matrix of the variables.

    See Also
    --------
    corrcoef : Normalized covariance matrix

    Examples
    --------
    Consider two variables, :math:`x_0` and :math:`x_1`, which
    correlate perfectly, but in opposite directions:

    >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
    >>> x
    array([[0, 1, 2],
           [2, 1, 0]])

    Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance
    matrix shows this clearly:

    >>> np.cov(x)
    array([[ 1., -1.],
           [-1.,  1.]])

    Note that element :math:`C_{0,1}`, which shows the correlation between
    :math:`x_0` and :math:`x_1`, is negative.

    Further, note how `x` and `y` are combined:

    >>> x = [-2.1, -1,  4.3]
    >>> y = [3,  1.1,  0.12]
    >>> X = np.vstack((x,y))
    >>> print np.cov(X)
    [[ 11.71        -4.286     ]
     [ -4.286        2.14413333]]
    >>> print np.cov(x, y)
    [[ 11.71        -4.286     ]
     [ -4.286        2.14413333]]
    >>> print np.cov(x)
    11.71

    sddof must be integerR�iR`iiRR�N(RaRkReR3RqRgRbRdR�R=R�R2RRR;R�tconjR�(
R�R\trowvartbiastddoftXR�ttupR�R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�s6P
	
		 cCsjt|||||�}|jdkr+|Syt|�}Wntk
rOdSX|ttj||��S(s�
    Return correlation coefficients.

    Please refer to the documentation for `cov` for more detail.  The
    relationship between the correlation coefficient matrix, `P`, and the
    covariance matrix, `C`, is

    .. math:: P_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }

    The values of `P` are between -1 and 1, inclusive.

    Parameters
    ----------
    x : array_like
        A 1-D or 2-D array containing multiple variables and observations.
        Each row of `m` represents a variable, and each column a single
        observation of all those variables. Also see `rowvar` below.
    y : array_like, optional
        An additional set of variables and observations. `y` has the same
        shape as `m`.
    rowvar : int, optional
        If `rowvar` is non-zero (default), then each row represents a
        variable, with observations in the columns. Otherwise, the relationship
        is transposed: each column represents a variable, while the rows
        contain observations.
    bias : int, optional
        Default normalization is by ``(N - 1)``, where ``N`` is the number of
        observations (unbiased estimate). If `bias` is 1, then
        normalization is by ``N``. These values can be overridden by using
        the keyword ``ddof`` in numpy versions >= 1.5.
    ddof : {None, int}, optional
        .. versionadded:: 1.5
        If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
        the number of observations; this overrides the value implied by
        ``bias``. The default value is ``None``.

    Returns
    -------
    out : ndarray
        The correlation coefficient matrix of the variables.

    See Also
    --------
    cov : Covariance matrix

    ii(RRgRWReRIRBtouter(R�R\RRRSRTR�R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyRs/
cCs~|dkrtg�S|dkr/tdt�Std|�}ddtdt||d�dtdt||d�S(s�
    Return the Blackman window.

    The Blackman window is a taper formed by using the the first three
    terms of a summation of cosines. It was designed to have close to the
    minimal leakage possible.  It is close to optimal, only slightly worse
    than a Kaiser window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.

    Returns
    -------
    out : ndarray
        The window, with the maximum value normalized to one (the value one
        appears only if the number of samples is odd).

    See Also
    --------
    bartlett, hamming, hanning, kaiser

    Notes
    -----
    The Blackman window is defined as

    .. math::  w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)

    Most references to the Blackman window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function. It is known as a
    "near optimal" tapering function, almost as good (by some measures)
    as the kaiser window.

    References
    ----------
    Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra,
    Dover Publications, New York.

    Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
    Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

    Examples
    --------
    >>> np.blackman(12)
    array([ -1.38777878e-17,   3.26064346e-02,   1.59903635e-01,
             4.14397981e-01,   7.36045180e-01,   9.67046769e-01,
             9.67046769e-01,   7.36045180e-01,   4.14397981e-01,
             1.59903635e-01,   3.26064346e-02,  -1.38777878e-17])


    Plot the window and the frequency response:

    >>> from numpy.fft import fft, fftshift
    >>> window = np.blackman(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Blackman window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Amplitude")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Sample")
    <matplotlib.text.Text object at 0x...>
    >>> plt.show()

    >>> plt.figure()
    <matplotlib.figure.Figure object at 0x...>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Blackman window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Magnitude [dB]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.axis('tight')
    (-0.5, 0.5, -100.0, ...)
    >>> plt.show()

    iig�z�G��?g�?g@g{�G�z�?g@(R3R/RqR1RGRA(R�R}((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR"NsZ

cCs{|dkrtg�S|dkr/tdt�Std|�}tt||dd�d||ddd||d�S(s�

    Return the Bartlett window.

    The Bartlett window is very similar to a triangular window, except
    that the end points are at zero.  It is often used in signal
    processing for tapering a signal, without generating too much
    ripple in the frequency domain.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.

    Returns
    -------
    out : array
        The triangular window, with the maximum value normalized to one
        (the value one appears only if the number of samples is odd), with
        the first and last samples equal to zero.

    See Also
    --------
    blackman, hamming, hanning, kaiser

    Notes
    -----
    The Bartlett window is defined as

    .. math:: w(n) = \frac{2}{M-1} \left(
              \frac{M-1}{2} - \left|n - \frac{M-1}{2}\right|
              \right)

    Most references to the Bartlett window come from the signal
    processing literature, where it is used as one of many windowing
    functions for smoothing values.  Note that convolution with this
    window produces linear interpolation.  It is also known as an
    apodization (which means"removing the foot", i.e. smoothing
    discontinuities at the beginning and end of the sampled signal) or
    tapering function. The fourier transform of the Bartlett is the product
    of two sinc functions.
    Note the excellent discussion in Kanasewich.

    References
    ----------
    .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
           Biometrika 37, 1-16, 1950.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
           The University of Alberta Press, 1975, pp. 109-110.
    .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
           Processing", Prentice-Hall, 1999, pp. 468-471.
    .. [4] Wikipedia, "Window function",
           http://en.wikipedia.org/wiki/Window_function
    .. [5] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 429.


    Examples
    --------
    >>> np.bartlett(12)
    array([ 0.        ,  0.18181818,  0.36363636,  0.54545455,  0.72727273,
            0.90909091,  0.90909091,  0.72727273,  0.54545455,  0.36363636,
            0.18181818,  0.        ])

    Plot the window and its frequency response (requires SciPy and matplotlib):

    >>> from numpy.fft import fft, fftshift
    >>> window = np.bartlett(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Bartlett window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Amplitude")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Sample")
    <matplotlib.text.Text object at 0x...>
    >>> plt.show()

    >>> plt.figure()
    <matplotlib.figure.Figure object at 0x...>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Bartlett window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Magnitude [dB]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.axis('tight')
    (-0.5, 0.5, -100.0, ...)
    >>> plt.show()

    iig@(R3R/RqR1R<RH(R�R}((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR!�sc

cCs`|dkrtg�S|dkr/tdt�Std|�}ddtdt||d�S(s\
    Return the Hanning window.

    The Hanning window is a taper formed by using a weighted cosine.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.

    Returns
    -------
    out : ndarray, shape(M,)
        The window, with the maximum value normalized to one (the value
        one appears only if `M` is odd).

    See Also
    --------
    bartlett, blackman, hamming, kaiser

    Notes
    -----
    The Hanning window is defined as

    .. math::  w(n) = 0.5 - 0.5cos\left(\frac{2\pi{n}}{M-1}\right)
               \qquad 0 \leq n \leq M-1

    The Hanning was named for Julius van Hann, an Austrian meterologist. It is
    also known as the Cosine Bell. Some authors prefer that it be called a
    Hann window, to help avoid confusion with the very similar Hamming window.

    Most references to the Hanning window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
           The University of Alberta Press, 1975, pp. 106-108.
    .. [3] Wikipedia, "Window function",
           http://en.wikipedia.org/wiki/Window_function
    .. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 425.

    Examples
    --------
    >>> np.hanning(12)
    array([ 0.        ,  0.07937323,  0.29229249,  0.57115742,  0.82743037,
            0.97974649,  0.97974649,  0.82743037,  0.57115742,  0.29229249,
            0.07937323,  0.        ])

    Plot the window and its frequency response:

    >>> from numpy.fft import fft, fftshift
    >>> window = np.hanning(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Hann window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Amplitude")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Sample")
    <matplotlib.text.Text object at 0x...>
    >>> plt.show()

    >>> plt.figure()
    <matplotlib.figure.Figure object at 0x...>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of the Hann window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Magnitude [dB]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.axis('tight')
    (-0.5, 0.5, -100.0, ...)
    >>> plt.show()

    iig�?g@(R3R/RqR1RGRA(R�R}((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR 	s[

cCs`|dkrtg�S|dkr/tdt�Std|�}ddtdt||d�S(sQ
    Return the Hamming window.

    The Hamming window is a taper formed by using a weighted cosine.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.

    Returns
    -------
    out : ndarray
        The window, with the maximum value normalized to one (the value
        one appears only if the number of samples is odd).

    See Also
    --------
    bartlett, blackman, hanning, kaiser

    Notes
    -----
    The Hamming window is defined as

    .. math::  w(n) = 0.54 - 0.46cos\left(\frac{2\pi{n}}{M-1}\right)
               \qquad 0 \leq n \leq M-1

    The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and
    is described in Blackman and Tukey. It was recommended for smoothing the
    truncated autocovariance function in the time domain.
    Most references to the Hamming window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
           University of Alberta Press, 1975, pp. 109-110.
    .. [3] Wikipedia, "Window function",
           http://en.wikipedia.org/wiki/Window_function
    .. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 425.

    Examples
    --------
    >>> np.hamming(12)
    array([ 0.08      ,  0.15302337,  0.34890909,  0.60546483,  0.84123594,
            0.98136677,  0.98136677,  0.84123594,  0.60546483,  0.34890909,
            0.15302337,  0.08      ])

    Plot the window and the frequency response:

    >>> from numpy.fft import fft, fftshift
    >>> window = np.hamming(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Hamming window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Amplitude")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Sample")
    <matplotlib.text.Text object at 0x...>
    >>> plt.show()

    >>> plt.figure()
    <matplotlib.figure.Figure object at 0x...>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Hamming window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Magnitude [dB]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.axis('tight')
    (-0.5, 0.5, -100.0, ...)
    >>> plt.show()

    iigH�z�G�?gq=
ףp�?g@(R3R/RqR1RGRA(R�R}((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR{	sZ

g��4!�\T�g��}�b3�<g��r넱�g�^�����<g��"P
�g'&&KF�5=g��bLa�g$ӛ�/��=g�j�z����g<t̾��=gV�����g4�T��&>g�0���K�g5dM�v;p>g�"�c쑾g��$��>g'd��o�ҾgY(��X?�>gZ�Y&+�g�|t�(?gR���B�g�u�Z?gI� ^�q�g����a��?g�!�N��g-��Ί>�?g�-4pK��g���w���?g��W��ӿg*�5�N��?g��T��`�g0�f�FV�g!����<g�A`��<g�ҫ`��g8��箸�g��}��<g�攐�*�<g�be~���g2�hϙ]'�gE�_
�V=gs��k�[=g�&�GCi=gf�C��g�{~5���g%t9Q��gO�$�=guo��>g�["�d,->gm�ր�VX>gna����>g���+A�>gR��x�?gI�墌�k?g�	��b��?cCs^|d}d}x?tdt|��D](}|}|}|||||}q&Wd||S(Nigig�?(txrangeRl(R�R�tb0tb1Rtb2((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt_chbevl
s
cCst|�t|ddt�S(Ng@i(RLR\t_i0A(R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt_i0_1$
scCs)t|�td|dt�t|�S(Ng@@g@(RLR\t_i0BRI(R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt_i0_2'
scCs~t|�j�}t|�}|dk}||||<|dk}t||�||<|}t||�||<|j�S(s0
    Modified Bessel function of the first kind, order 0.

    Usually denoted :math:`I_0`.  This function does broadcast, but will *not*
    "up-cast" int dtype arguments unless accompanied by at least one float or
    complex dtype argument (see Raises below).

    Parameters
    ----------
    x : array_like, dtype float or complex
        Argument of the Bessel function.

    Returns
    -------
    out : ndarray, shape = x.shape, dtype = x.dtype
        The modified Bessel function evaluated at each of the elements of `x`.

    Raises
    ------
    TypeError: array cannot be safely cast to required type
        If argument consists exclusively of int dtypes.

    See Also
    --------
    scipy.special.iv, scipy.special.ive

    Notes
    -----
    We use the algorithm published by Clenshaw [1]_ and referenced by
    Abramowitz and Stegun [2]_, for which the function domain is partitioned
    into the two intervals [0,8] and (8,inf), and Chebyshev polynomial
    expansions are employed in each interval. Relative error on the domain
    [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16
    with an rms of 1.4e-16 (n = 30000).

    References
    ----------
    .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in
           *National Physical Laboratory Mathematical Tables*, vol. 5, London:
           Her Majesty's Stationery Office, 1962.
    .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical
           Functions*, 10th printing, New York: Dover, 1964, pp. 379.
           http://www.math.sfu.ca/~cbm/aands/page_379.htm
    .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

    Examples
    --------
    >>> np.i0([0.])
    array(1.0)
    >>> np.i0([0., 1. + 2j])
    array([ 1.00000000+0.j        ,  0.18785373+0.64616944j])

    ig @(RURR7R^R`R�(R�R\tindtind2((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR%*
s6cCs}ddlm}|dkr,tjdg�Std|�}|dd}||td|||d��|t|��S(s�
    Return the Kaiser window.

    The Kaiser window is a taper formed by using a Bessel function.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.
    beta : float
        Shape parameter for window.

    Returns
    -------
    out : array
        The window, with the maximum value normalized to one (the value
        one appears only if the number of samples is odd).

    See Also
    --------
    bartlett, blackman, hamming, hanning

    Notes
    -----
    The Kaiser window is defined as

    .. math::  w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}}
               \right)/I_0(\beta)

    with

    .. math:: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2},

    where :math:`I_0` is the modified zeroth-order Bessel function.

    The Kaiser was named for Jim Kaiser, who discovered a simple approximation
    to the DPSS window based on Bessel functions.
    The Kaiser window is a very good approximation to the Digital Prolate
    Spheroidal Sequence, or Slepian window, which is the transform which
    maximizes the energy in the main lobe of the window relative to total
    energy.

    The Kaiser can approximate many other windows by varying the beta
    parameter.

    ====  =======================
    beta  Window shape
    ====  =======================
    0     Rectangular
    5     Similar to a Hamming
    6     Similar to a Hanning
    8.6   Similar to a Blackman
    ====  =======================

    A beta value of 14 is probably a good starting point. Note that as beta
    gets large, the window narrows, and so the number of samples needs to be
    large enough to sample the increasingly narrow spike, otherwise NaNs will
    get returned.

    Most references to the Kaiser window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by
           digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
           John Wiley and Sons, New York, (1966).
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
           University of Alberta Press, 1975, pp. 177-178.
    .. [3] Wikipedia, "Window function",
           http://en.wikipedia.org/wiki/Window_function

    Examples
    --------
    >>> np.kaiser(12, 14)
    array([  7.72686684e-06,   3.46009194e-03,   4.65200189e-02,
             2.29737120e-01,   5.99885316e-01,   9.45674898e-01,
             9.45674898e-01,   5.99885316e-01,   2.29737120e-01,
             4.65200189e-02,   3.46009194e-03,   7.72686684e-06])


    Plot the window and the frequency response:

    >>> from numpy.fft import fft, fftshift
    >>> window = np.kaiser(51, 14)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Kaiser window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Amplitude")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Sample")
    <matplotlib.text.Text object at 0x...>
    >>> plt.show()

    >>> plt.figure()
    <matplotlib.figure.Figure object at 0x...>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Kaiser window")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Magnitude [dB]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    <matplotlib.text.Text object at 0x...>
    >>> plt.axis('tight')
    (-0.5, 0.5, -100.0, ...)
    >>> plt.show()

    i����(R%ig�?ig@(t
numpy.dualR%RbR3R1RIRq(R�tbetaR%R}talpha((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR#l
sxcCs9tj|�}tt|dkd|�}t|�|S(s�	
    Return the sinc function.

    The sinc function is :math:`\sin(\pi x)/(\pi x)`.

    Parameters
    ----------
    x : ndarray
        Array (possibly multi-dimensional) of values for which to to
        calculate ``sinc(x)``.

    Returns
    -------
    out : ndarray
        ``sinc(x)``, which has the same shape as the input.

    Notes
    -----
    ``sinc(0)`` is the limit value 1.

    The name sinc is short for "sine cardinal" or "sinus cardinalis".

    The sinc function is used in various signal processing applications,
    including in anti-aliasing, in the construction of a
    Lanczos resampling filter, and in interpolation.

    For bandlimited interpolation of discrete-time signals, the ideal
    interpolation kernel is proportional to the sinc function.

    References
    ----------
    .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web
           Resource. http://mathworld.wolfram.com/SincFunction.html
    .. [2] Wikipedia, "Sinc function",
           http://en.wikipedia.org/wiki/Sinc_function

    Examples
    --------
    >>> x = np.arange(-20., 21.)/5.
    >>> np.sinc(x)
    array([ -3.89804309e-17,  -4.92362781e-02,  -8.40918587e-02,
            -8.90384387e-02,  -5.84680802e-02,   3.89804309e-17,
             6.68206631e-02,   1.16434881e-01,   1.26137788e-01,
             8.50444803e-02,  -3.89804309e-17,  -1.03943254e-01,
            -1.89206682e-01,  -2.16236208e-01,  -1.55914881e-01,
             3.89804309e-17,   2.33872321e-01,   5.04551152e-01,
             7.56826729e-01,   9.35489284e-01,   1.00000000e+00,
             9.35489284e-01,   7.56826729e-01,   5.04551152e-01,
             2.33872321e-01,   3.89804309e-17,  -1.55914881e-01,
            -2.16236208e-01,  -1.89206682e-01,  -1.03943254e-01,
            -3.89804309e-17,   8.50444803e-02,   1.26137788e-01,
             1.16434881e-01,   6.68206631e-02,   3.89804309e-17,
            -5.84680802e-02,  -8.90384387e-02,  -8.40918587e-02,
            -4.92362781e-02,  -3.89804309e-17])

    >>> plt.plot(x, np.sinc(x))
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Sinc Function")
    <matplotlib.text.Text object at 0x...>
    >>> plt.ylabel("Amplitude")
    <matplotlib.text.Text object at 0x...>
    >>> plt.xlabel("X")
    <matplotlib.text.Text object at 0x...>
    >>> plt.show()

    It works in 2-D as well:

    >>> x = np.arange(-200., 201.)/50.
    >>> xx = np.outer(x, x)
    >>> plt.imshow(np.sinc(xx))
    <matplotlib.image.AxesImage object at 0x...>

    ig#B����;(RbR5RAR<RJ(R�R\((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�
sJcCs)t|dtdt�}|jd�|S(sk
    Return a copy of an array sorted along the first axis.

    Parameters
    ----------
    a : array_like
        Array to be sorted.

    Returns
    -------
    sorted_array : ndarray
        Array of the same type and shape as `a`.

    See Also
    --------
    sort

    Notes
    -----
    ``np.msort(a)`` is equivalent to  ``np.sort(a, axis=0)``.

    RRi(R3RjRQ(RsR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR9s
cCs|rD|dkr+|j�}|j�qV|jd|�|}nt|d|�}|jdkro|j�S|dkr�d}ntd�g|j}t|j|d�}|j|ddkr�t||d�||<nt|d|d�||<t||d|d|�S(s�	
    Compute the median along the specified axis.

    Returns the median of the array elements.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : int, optional
        Axis along which the medians are computed. The default (axis=None)
        is to compute the median along a flattened version of the array.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool optional
       If True, then allow use of memory of input array (a) for
       calculations. The input array will be modified by the call to
       median. This will save memory when you do not need to preserve
       the contents of the input array. Treat the input as undefined,
       but it will probably be fully or partially sorted. Default is
       False. Note that, if `overwrite_input` is True and the input
       is not already an ndarray, an error will be raised.

    Returns
    -------
    median : ndarray
        A new array holding the result (unless `out` is specified, in
        which case that array is returned instead).  If the input contains
        integers, or floats of smaller precision than 64, then the output
        data-type is float64.  Otherwise, the output data-type is the same
        as that of the input.

    See Also
    --------
    mean, percentile

    Notes
    -----
    Given a vector V of length N, the median of V is the middle value of
    a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is
    odd.  When N is even, it is the average of the two middle values of
    ``V_sorted``.

    Examples
    --------
    >>> a = np.array([[10, 7, 4], [3, 2, 1]])
    >>> a
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> np.median(a)
    3.5
    >>> np.median(a, axis=0)
    array([ 6.5,  4.5,  2.5])
    >>> np.median(a, axis=1)
    array([ 7.,  2.])
    >>> m = np.median(a, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.median(a, axis=0, out=m)
    array([ 6.5,  4.5,  2.5])
    >>> m
    array([ 6.5,  4.5,  2.5])
    >>> b = a.copy()
    >>> np.median(b, axis=1, overwrite_input=True)
    array([ 7.,  2.])
    >>> assert not np.all(a==b)
    >>> b = a.copy()
    >>> np.median(b, axis=None, overwrite_input=True)
    3.5
    >>> assert not np.all(a==b)

    R�iiiR�N((	RaRNRQRdR�R�R�RkRR(RsR�R�toverwrite_inputtsortedtindexertindex((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyRTs"J
	
	cCs�tj|�}|dkr1|jd|d|�S|dkrS|jd|d|�S|r�|dkr~|j�}|j�q�|jd|�|}nt|d|�}|dkr�d}nt||||�S(s�

    Compute the qth percentile of the data along the specified axis.

    Returns the qth percentile of the array elements.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    q : float in range of [0,100] (or sequence of floats)
        Percentile to compute which must be between 0 and 100 inclusive.
    axis : int, optional
        Axis along which the percentiles are computed. The default (None)
        is to compute the median along a flattened version of the array.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool, optional
       If True, then allow use of memory of input array `a` for
       calculations. The input array will be modified by the call to
       median. This will save memory when you do not need to preserve
       the contents of the input array. Treat the input as undefined,
       but it will probably be fully or partially sorted.
       Default is False. Note that, if `overwrite_input` is True and the
       input is not already an array, an error will be raised.

    Returns
    -------
    pcntile : ndarray
        A new array holding the result (unless `out` is specified, in
        which case that array is returned instead).  If the input contains
        integers, or floats of smaller precision than 64, then the output
        data-type is float64.  Otherwise, the output data-type is the same
        as that of the input.

    See Also
    --------
    mean, median

    Notes
    -----
    Given a vector V of length N, the qth percentile of V is the qth ranked
    value in a sorted copy of V.  A weighted average of the two nearest
    neighbors is used if the normalized ranking does not match q exactly.
    The same as the median if ``q=50``, the same as the minimum if ``q=0``
    and the same as the maximum if ``q=100``.

    Examples
    --------
    >>> a = np.array([[10, 7, 4], [3, 2, 1]])
    >>> a
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> np.percentile(a, 50)
    3.5
    >>> np.percentile(a, 0.5, axis=0)
    array([ 6.5,  4.5,  2.5])
    >>> np.percentile(a, 50, axis=1)
    array([ 7.,  2.])

    >>> m = np.percentile(a, 50, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.percentile(a, 50, axis=0, out=m)
    array([ 6.5,  4.5,  2.5])
    >>> m
    array([ 6.5,  4.5,  2.5])

    >>> b = a.copy()
    >>> np.percentile(b, 50, axis=1, overwrite_input=True)
    array([ 7.,  2.])
    >>> assert not np.all(a==b)
    >>> b = a.copy()
    >>> np.percentile(b, 50, axis=None, overwrite_input=True)
    3.5

    iR�R�idN(RbR4RhRiRaRNRQt_compute_qth_percentile(RstqR�R�RfRg((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR�sN
		cCs�t|�sPg|D]}t|||d�^q}|dk	rL||_n|S|d}|dksr|dkr�td��ntd�g|j}|j|}||d}t|�}	|	|kr�t|	|	d�||<t	d�}
d}nmt|	|	d�||<|	d}t	||||	gt
�}
dg|j}
d|
|<|
|
_|
j�}tj
|||
d|d|�|S(	NgY@iis.percentile must be either in the range [0,100]g�?iR�R�(R@RjRaRReR�R�RdRkR3RqRrRCR(RgRkR�R�tqiR�RhtNxRiRRwtsumvalR�twshape((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyRjs2%

	

	g�?c
Cskt|�}|dkr!|}nlt|�}|jdkr{t|�}dg|j}|jd||<|j|�}nt|d|�}t|j�}td�g|}td�g|}tdd�||<tdd�||<y'|||||dj|�}	WnUt	k
rft
j|�}t
j|�}tj
|||||d|�}	nX|	S(s�
    Integrate along the given axis using the composite trapezoidal rule.

    Integrate `y` (`x`) along given axis.

    Parameters
    ----------
    y : array_like
        Input array to integrate.
    x : array_like, optional
        If `x` is None, then spacing between all `y` elements is `dx`.
    dx : scalar, optional
        If `x` is None, spacing given by `dx` is assumed. Default is 1.
    axis : int, optional
        Specify the axis.

    Returns
    -------
    trapz : float
        Definite integral as approximated by trapezoidal rule.

    See Also
    --------
    sum, cumsum

    Notes
    -----
    Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will
    be taken from `y` array, by default x-axis distances between points will be
    1.0, alternatively they can be provided with `x` array or with `dx` scalar.
    Return value will be equal to combined area under the red lines.


    References
    ----------
    .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule

    .. [2] Illustration image:
           http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

    Examples
    --------
    >>> np.trapz([1,2,3])
    4.0
    >>> np.trapz([1,2,3], x=[4,6,8])
    8.0
    >>> np.trapz([1,2,3], dx=2)
    8.0
    >>> a = np.arange(6).reshape(2, 3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.trapz(a, axis=0)
    array([ 1.5,  2.5,  3.5])
    >>> np.trapz(a, axis=1)
    array([ 2.,  8.])

    iiR�i����g@N(R5RaR�RRdR�RlR�RrReRbR4RCR(
R\R�R�R�R�RdR�R�R�tret((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR$>s,;	'
*cBs�y�i}d||f|Ue|e�rDe|||j��n�e|e�r~ee|||d�|dj��nKe|e�r�x9|D].}ee|||d�|dj��q�WnWnnXdS(s�Adds documentation to obj which is in module place.

    If doc is a string add it to obj as a docstring

    If doc is a tuple, then the first element is interpreted as
       an attribute of obj and the second as the docstring
          (method, docstring)

    If doc is a list, then each element of the list should be a
       sequence of length two --> [(method1, docstring1),
       (method2, docstring2), ...]

    This routine never raises an error.

    This routine cannot modify read-only docstrings, as appear
    in new-style classes or built-in functions. Because this
    routine never raises an error the caller must check manually
    that the docstrings were changed.
       sfrom %s import %siiN(R�R)R'tstripR�tgetattrR�(R
tobjR/tnewtval((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR&�s+
3cOs�t|�dkr=dtt|�dk�}t|��ntj|�}t|�}|jdt�}|jdt�}|jdd�}|dkr�td	��nd|}gt|�D]8\}	}
|
j	||	 d||	d
dd��^q�}g|D]}
|
j^q}|dkrxdd|d|d_dd|d|d
_|d
|d|d<|d
<n|r�|r�g|D]}
|
j
�^q�S|SnC|r�tj|d
t�}
g|D]}
|
|
^q�Stj|�SdS(s

    Return coordinate matrices from two or more coordinate vectors.

    Make N-D coordinate arrays for vectorized evaluations of
    N-D scalar/vector fields over N-D grids, given
    one-dimensional coordinate arrays x1, x2,..., xn.

    Parameters
    ----------
    x1, x2,..., xn : array_like
        1-D arrays representing the coordinates of a grid.
    indexing : {'xy', 'ij'}, optional
        Cartesian ('xy', default) or matrix ('ij') indexing of output.
        See Notes for more details.
    sparse : bool, optional
         If True a sparse grid is returned in order to conserve memory.
         Default is False.
    copy : bool, optional
        If False, a view into the original arrays are returned in
        order to conserve memory.  Default is True.  Please note that
        ``sparse=False, copy=False`` will likely return non-contiguous arrays.
        Furthermore, more than one element of a broadcast array may refer to
        a single memory location.  If you need to write to the arrays, make
        copies first.

    Returns
    -------
    X1, X2,..., XN : ndarray
        For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` ,
        return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij'
        or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy'
        with the elements of `xi` repeated to fill the matrix along
        the first dimension for `x1`, the second for `x2` and so on.

    Notes
    -----
    This function supports both indexing conventions through the indexing keyword
    argument.  Giving the string 'ij' returns a meshgrid with matrix indexing,
    while 'xy' returns a meshgrid with Cartesian indexing.  In the 2-D case
    with inputs of length M and N, the outputs are of shape (N, M) for 'xy'
    indexing and (M, N) for 'ij' indexing.  In the 3-D case with inputs of
    length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M,
    N, P) for 'ij' indexing.  The difference is illustrated by the following
    code snippet::

        xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
        for i in range(nx):
            for j in range(ny):
                # treat xv[i,j], yv[i,j]

        xv, yv = meshgrid(x, y, sparse=False, indexing='xy')
        for i in range(nx):
            for j in range(ny):
                # treat xv[j,i], yv[j,i]

    See Also
    --------
    index_tricks.mgrid : Construct a multi-dimensional "meshgrid"
                     using indexing notation.
    index_tricks.ogrid : Construct an open multi-dimensional "meshgrid"
                     using indexing notation.

    Examples
    --------
    >>> nx, ny = (3, 2)
    >>> x = np.linspace(0, 1, nx)
    >>> y = np.linspace(0, 1, ny)
    >>> xv, yv = meshgrid(x, y)
    >>> xv
    array([[ 0. ,  0.5,  1. ],
           [ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.,  0.,  0.],
           [ 1.,  1.,  1.]])
    >>> xv, yv = meshgrid(x, y, sparse=True)  # make sparse output arrays
    >>> xv
    array([[ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.],
           [ 1.]])

    `meshgrid` is very useful to evaluate functions on a grid.

    >>> x = np.arange(-5, 5, 0.1)
    >>> y = np.arange(-5, 5, 0.1)
    >>> xx, yy = meshgrid(x, y, sparse=True)
    >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
    >>> h = plt.contourf(x,y,z)

    is/meshgrid() takes 2 or more arguments (%d given)iRtsparsetindexingR�tijs.Valid values for `indexing` are 'xy' and 'ij'.ii����NR`(sxyRx(i(i����(ii����(i(i����i(i(RlRkReRbRUtgetRjR�R1R�RaRgRdRR/tbroadcast_arrays(txiR8tmsgR�R�tcopy_RvRwts0RR�toutputRdt	mult_fact((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR(�s2[
K cCs�d}t|�tk	r<y
|j}Wq<tk
r8q<Xnt|�}|j}|dkr�|dkrx|j�}n|j}|d}n|dkr�|r�||�S|j�Snt	d�g|}|j
|}t|j
�}t|t
ttf�r�|dkr||7}n|dks/||kr>td��n||cd8<t||j|jj�}t	d|�||<||||<t	|d�||<t	d�g|}	t	|dd�|	|<||	||<nt|t	�r�|j|�\}
}}tt|
||��}
|
dkr@|r3||�S|j�Sn||c|
8<t||j|jj�}|
dkrzn!t	d|
�||<||||<||kr�nKt	||
d�||<t	d�g|}	t	|d�|	|<||	||<|dkrq�t|
||dt�}t|
|dt�}t||�}t	|
||
�||<t	d�g|}	||	|<||	||<nSt|dtdddd�}t|dt�}t||�}|||<||}|r�||�S|SdS(s�
    Return a new array with sub-arrays along an axis deleted.

    Parameters
    ----------
    arr : array_like
      Input array.
    obj : slice, int or array of ints
      Indicate which sub-arrays to remove.
    axis : int, optional
      The axis along which to delete the subarray defined by `obj`.
      If `axis` is None, `obj` is applied to the flattened array.

    Returns
    -------
    out : ndarray
        A copy of `arr` with the elements specified by `obj` removed. Note
        that `delete` does not occur in-place. If `axis` is None, `out` is
        a flattened array.

    See Also
    --------
    insert : Insert elements into an array.
    append : Append elements at the end of an array.

    Examples
    --------
    >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    >>> arr
    array([[ 1,  2,  3,  4],
           [ 5,  6,  7,  8],
           [ 9, 10, 11, 12]])
    >>> np.delete(arr, 1, 0)
    array([[ 1,  2,  3,  4],
           [ 9, 10, 11, 12]])

    >>> np.delete(arr, np.s_[::2], 1)
    array([[ 2,  4],
           [ 6,  8],
           [10, 12]])
    >>> np.delete(arr, [1,3,5], None)
    array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])

    iis
invalid entryR`RR�N(RaR�R8t__array_wrap__RfR4R�RNRR�RdR�R�RktlongR?ReR6R`tflagstfnctindicesRlRXR1R>RYR3(R
RsR�twrapR�tslobjR�tnewshapeRttslobj2tstarttstoptsteptnumtodelR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR)8
s�-

		










cCs�d}t|�tk	r<y
|j}Wq<tk
r8q<Xnt|�}|j}|dkr�|dkrx|j�}n|j}|d}n|dkr�|j�}||d<|r�||�S|Snt	d�g|}|j
|}t|j
�}t|t
ttf�r�|dkr'||7}n|dks?||kr[td|||f��nt|dtd|j�}tj|d|d�}|g|j
|}n1t|t	�r�t|j|�itd6�}nt|dt�}t|�}	|t|	�}
tt|	|�|
�}||c|	7<t||j|jj�}t	d�g|}
|
||<||
|<|||<|||
<|r�||�S|S(	s�
    Insert values along the given axis before the given indices.

    Parameters
    ----------
    arr : array_like
        Input array.
    obj : int, slice or sequence of ints
        Object that defines the index or indices before which `values` is
        inserted.
    values : array_like
        Values to insert into `arr`. If the type of `values` is different
        from that of `arr`, `values` is converted to the type of `arr`.
    axis : int, optional
        Axis along which to insert `values`.  If `axis` is None then `arr`
        is flattened first.

    Returns
    -------
    out : ndarray
        A copy of `arr` with `values` inserted.  Note that `insert`
        does not occur in-place: a new array is returned. If
        `axis` is None, `out` is a flattened array.

    See Also
    --------
    append : Append elements at the end of an array.
    delete : Delete elements from an array.

    Examples
    --------
    >>> a = np.array([[1, 1], [2, 2], [3, 3]])
    >>> a
    array([[1, 1],
           [2, 2],
           [3, 3]])
    >>> np.insert(a, 1, 5)
    array([1, 5, 1, 2, 2, 3, 3])
    >>> np.insert(a, 1, 5, axis=1)
    array([[1, 5, 1],
           [2, 5, 2],
           [3, 5, 3]])

    >>> b = a.flatten()
    >>> b
    array([1, 1, 2, 2, 3, 3])
    >>> np.insert(b, [2, 2], [5, 6])
    array([1, 1, 5, 6, 2, 2, 3, 3])

    >>> np.insert(b, slice(2, 4), [5, 6])
    array([1, 1, 5, 2, 6, 2, 3, 3])

    >>> np.insert(b, [2, 2], [7.13, False]) # type casting
    array([1, 1, 7, 0, 2, 2, 3, 3])

    >>> x = np.arange(8).reshape(2, 4)
    >>> idx = (1, 3)
    >>> np.insert(x, idx, 999, axis=1)
    array([[  0, 999,   1,   2, 999,   3],
           [  4, 999,   5,   6, 999,   7]])

    ii.s6index (%d) out of range (0<=index<=%d) in dimension %dRR�R`N(RaR�R8R�RfR4R�RNRR�RdR�R�RkR�R?ReR3R�RbtrollaxisR1R�R>RlRYR6R`R�R�(R
RstvaluesR�R�R�R�R�R�tnumnewtindex1tindex2RtR�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR*�
s`?

		




"




cCsht|�}|dkrR|jdkr6|j�}nt|�}|jd}nt||fd|�S(s�
    Append values to the end of an array.

    Parameters
    ----------
    arr : array_like
        Values are appended to a copy of this array.
    values : array_like
        These values are appended to a copy of `arr`.  It must be of the
        correct shape (the same shape as `arr`, excluding `axis`).  If `axis`
        is not specified, `values` can be any shape and will be flattened
        before use.
    axis : int, optional
        The axis along which `values` are appended.  If `axis` is not given,
        both `arr` and `values` are flattened before use.

    Returns
    -------
    append : ndarray
        A copy of `arr` with `values` appended to `axis`.  Note that `append`
        does not occur in-place: a new array is allocated and filled.  If
        `axis` is None, `out` is a flattened array.

    See Also
    --------
    insert : Insert elements into an array.
    delete : Delete elements from an array.

    Examples
    --------
    >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
    array([1, 2, 3, 4, 5, 6, 7, 8, 9])

    When `axis` is specified, `values` must have the correct shape.

    >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
    Traceback (most recent call last):
    ...
    ValueError: arrays must have same number of dimensions

    iR�N(R5RaR�RNR2(R
R�R�((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyR+1s.(t
__docformat__t__all__twarningsttypesRtnumpy.core.numericR�tnumericR�t
numpy.coreR.R/R0R1R2R3R4R5R6R7R8R9R:R;R<R=R>R?R@tnumpy.core.umathRARBRCRDRERFRGRHRIRJRKRLRMtnumpy.core.fromnumericRNRORPRQRRtnumpy.core.numerictypesRSRTRURVtnumpy.lib.twodim_baseRWt_compiled_baseRXR'RRR,R�tarraysetopsRYtutilsRZR-tnumpyRbRRaR�RRRRRRRRRRR	R
Rt
hexversiontsetsRRRRR
RRRRRRRjRRKRRRR"R!R RR]R_R\R^R`R%R#RRRRRjR$R&R(R)R*R+(((s=/usr/lib64/python2.7/site-packages/numpy/lib/function_base.pyt<module>s
	L4X(	��sB	=0	i=M-6	#.	0	%/D;#=#*�x9	a	j	b	d						B		N	cd	#V	#	�z