Current File : //proc/self/root/proc/self/root/lib64/python2.7/site-packages/numpy/fft/helper.py |
"""
Discrete Fourier Transforms - helper.py
"""
# Created by Pearu Peterson, September 2002
__all__ = ['fftshift','ifftshift','fftfreq']
from numpy.core import asarray, concatenate, arange, take, \
integer, empty
import numpy.core.numerictypes as nt
import types
def fftshift(x,axes=None):
"""
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
"""
tmp = asarray(x)
ndim = len(tmp.shape)
if axes is None:
axes = range(ndim)
elif isinstance(axes, (int, nt.integer)):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = (n+1)//2
mylist = concatenate((arange(p2,n),arange(p2)))
y = take(y,mylist,k)
return y
def ifftshift(x,axes=None):
"""
The inverse of fftshift.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
"""
tmp = asarray(x)
ndim = len(tmp.shape)
if axes is None:
axes = range(ndim)
elif isinstance(axes, (int, nt.integer)):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = n-(n+1)//2
mylist = concatenate((arange(p2,n),arange(p2)))
y = take(y,mylist,k)
return y
def fftfreq(n,d=1.0):
"""
Return the Discrete Fourier Transform sample frequencies.
The returned float array contains the frequency bins in
cycles/unit (with zero at the start) given a window length `n` and a
sample spacing `d`::
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
Parameters
----------
n : int
Window length.
d : scalar
Sample spacing.
Returns
-------
out : ndarray
The array of length `n`, containing the sample frequencies.
Examples
--------
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
"""
assert isinstance(n,types.IntType) or isinstance(n, integer)
val = 1.0/(n*d)
results = empty(n, int)
N = (n-1)//2 + 1
p1 = arange(0,N,dtype=int)
results[:N] = p1
p2 = arange(-(n//2),0,dtype=int)
results[N:] = p2
return results * val
#return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d)